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1. INTRODUCTION 

In the early 1980s the seeds of a problem were sown as a result of synthesizers being developed and 

sold with built-in sequencers.  The introduction of MIDI into this equation led to an explosion in the 

use of sequencers and computers, thanks to the new potential for connection and synchronisation. 

These computers and sequencers performed their stored tunes in perfect metronomic time, a 

performance which sounded inhuman. They sounded inhuman because human performers normally 

perform expressively – for example speeding up and slowing down while playing, and changing how 

loudly they play. The performer‟s changes in tempo and dynamics allow them to express a fixed score 

– hence the term expressive performance [Widmer and Goebl 2004]. However rather than looking for 

ways to give the music performances more human-like expression, pop performers developed new 

types of music, such as synth-pop and dance music, that actually utilized this metronomic perfection to 

generate “robotic” performances.  

Outside of pop, the uptake of sequencers for performance (as opposed to for composition) was 

less enthusiastic, except for occasional novelties like Switched on Bach by Wendy Carlos, computer 

performance of classical music was a rarity. Computer composition of classical music had been around 

since 1957 when The Illiac Suite for String Quartet - the first published composition by a computer - 

was published by Lejaren Hiller [Hiller and Isaacson 1959]. Since then there has been a large body of 

such music and research published, with many successful systems produced for automated and semi-

automated computer composition [Buxton 1977][Roads 1996][Miranda 2001]. But publications on 

computer expressive performance of music lagged behind composition by almost quarter of a century. 

During the period when MIDI and computer use exploded amongst pop performers, and up to 1987 - 

when Yamaha had released their first Disklavier MIDI piano - there were only 2 or 3 researchers 

publishing on algorithms for expressive performance of music [Todd 1985; Sundberg et al. 1983]. 

However, from the end of the 1980s onwards there was an increasing interest in automated and semi-

automated Computer Systems for Expressive Music Performance (CSEMP). A CSEMP is a computer 

system able to generate expressive performances of music. For example software for music typesetting 



 

will often be used to write a piece of music, but some packages play back the music in a relatively 

robotic way – the addition of a CSEMP enables a more realistic playback. Or an MP3 player could 

include a CSEMP which would allow performances of music to be adjusted to different performance 

styles.  

In this paper we will review the majority of research on automated and semi-automated 

CSEMPs. By automated, we refer to the ability of the system – once set-up or trained - to generate a 

performance of a new piece, not seen before by the system, without manual intervention. Some 

automated systems may require manual set-up, but then can be presented with multiple pieces which 

will be played autonomously. A semi-automated system is one which requires some manual input from 

the user (for example a musicological analysis) to deal with a new piece.   

1.1 Human Expressive Performance 

How do humans make their performances sound so different to the so-called “perfect” performance a 

computer would give? In this paper the strategies and changes which are not marking in a score but 

which performers apply to the music will be referred to as expressive Performance Actions. Two of the 

most common performance actions are changing the Tempo and the Loudness of the piece as it is 

played. These should not be confused with the tempo or loudness changes marked in the score, like 

accelerando or mezzo-forte, but to additional tempo and loudness changes not marked in the score. For 

example, a common expressive performance strategy is for the performer to slow down as they 

approach the end of the piece [Friberg and Sundberg 1999]. Another performance action is the use of 

expressive articulation – when a performer chooses to play notes in a more staccato (short and 

pronounced) or legato (smooth) way. Those playing instruments with continuous tuning, for example 

string players, may also use expressive intonation, making notes slightly sharper or flatter; and such 

instruments also allow for expressive vibrato. Many instruments provide the ability to expressively 

change timbre as well.  

 Why do humans add these expressive performance actions when playing music? We will set 

the context for answering this question using a historical perspective. Pianist and musicologist Ian Pace 

offers up the following as a familiar historical model for the development of notation (though suggests 

that overall it constitutes an over-simplification) [Pace 2007]: 

In the Middle Ages and to a lesser extent to the Renaissance, musical scores provided only a 
bare outline of the music, with much to be filled in by the performer or performers, freely 
improvising within conventions which were essentially communicated verbally within a 
region or locality. By the Baroque Era, composers began to be more specific in terms of 
requirements for pitch, rhythm and articulation, though it was still common for performers to 
apply embellishments and diminutions to the notated scores, and during the Classical Period a 
greater range of specificity was introduced for dynamics and accentuation. All of this reflected 
a gradual increase in the internationalism of music, with composers and performers travelling 
more widely and thus rendering the necessity for greater notational clarity as knowledge of 
local performance conventions could no longer be taken for granted. From Beethoven onwards, 
the composer took on a new role, less a servant composing to occasion at the behest of his or 
her feudal masters, more a freelance entrepreneur who followed his own desires, wishes and 
convictions, and wrote for posterity, hence bequeathing the notion of the master-work which 
had a more palpable autonomous existence over and above its various manifestations in 
performance. This required an even greater degree of notational exactitude; for example in the 
realms of tempo, where generic Italianate conventions were both rendered in the composer‟s 
native language and finely nuanced by qualifying clauses and adjectives. Through the course 



 

of the nineteenth century, tempo modifications were also entered more frequently into scores, 
and with the advent of a greater emphasis on timbre, scores gradually became more specific in 
terms of the indication of instrumentation. Performers phased out the processes of 
embellishment and ornamentation as the score came to attain more of the status of a sacred 
object. In the twentieth century, this process was extended much further, with the finest 
nuances of inflection, rubato, rhythmic modification coming to be indicated in the score. By 
the time of the music of Brian Ferneyhough, to take the most extreme example, all minutest 
details of every parameter are etched into the score, and the performer‟s task is simply to try 
and execute these as precisely as he or she can. 

 

So in pre-20th century music there has been a tradition of performers making additions to a 

performance which were not marked in the score (though the reason Pace calls this history an 

oversimplification is that modern music does have the capacity for expressive performance, as we will 

discuss later).  

A number of studies have been done into this pre-20th Century (specifically Baroque, Classical and 

Romantic) music performance. The earliest studies began with Seashore [1938], and good overviews 

include Palmer [1997] and Gabrielsson [2003]. One element of these studies has been to discover what 

aspects of a piece of music – what Musical Features - are related to a performer‟s use of expressive 

performance actions. One of these musical features expressed is the performer‟s structural 

interpretation of the piece [Palmer 1997]. A piece of music has a number of levels of meaning – a 

hierarchy. Notes make up motifs, motifs make up phrases, phrases make up sections, sections make up 

a piece (in more continuous instruments there are intranote elements as well). Each element - note, 

motif, etc - plays a role in other higher elements. Human performers have been shown to express this 

hierarchical structure in their performances. Performers have a tendency to slow down at boundaries in 

the hierarchy – with the amount of slowing being correlated to the importance of the boundary [Clarke 

1998]. Thus a performer would tend to slow more at a boundary between sections than between phrases. 

There are also regularities relating to other musical features in performers‟ expressive strategies. For 

example in some cases the musical feature of higher pitched notes causes a performance action of the 

notes being played more loudly; also note which introduce melodic tension relative to the key may be 

played more loudly. However for every rule there will always be exceptions.  

Another factor influencing expressive performance actions is Performance Context. Performers 

may wish to express a certain mood or emotion (e.g. sadness, happiness) through a piece of music. 

Performers have been shown to change the tempo and dynamics of a piece when asked to express an 

emotion as they play it [Gabrielsson and Juslin 1996]. For a discussion of other factors involved in 

human expressive performance, we refer the reader to [Juslin 2003]. 

1.2 Computer Expressive Performance 

Having examined human expressive performance, the question now becomes why should we want 

computers to perform music expressively? There are at least five answers to this question: 

1. Investigating human expressive performance by developing computational models – Expressive 

performance is a fertile area for investigating musicology and human psychology [Seashore 1938; 

Palmer 1997; Gabrielsson 2003]. As an alternative to experimentation with human performers, 

models can be built which attempt to simulate elements of human expressive performance. As in 



 

all mathematical and computational modelling, the model itself can give the researcher greater 

insight into the mechanisms inherent in that which is being modelled.  

2. Realistic playback on a music typesetting or composing tool – There are many computer tools 

available now for music typesetting and for composing. If these tools play back the compositions 

with expression on the computer, the composer will have a better idea of what their final piece will 

sound like. For example, Sibelius, Notion and Finale have some ability for expressive playback. 

3. Playing computer-generated music expressively – There are a number of algorithmic composition 

systems that output music without expressive performance but which audiences would normally 

expect to hear played expressively. These compositions in their raw form will play on a computer 

in a robotic way. A CSEMP would allow the output of an algorithmic composition system to be 

played directly on the computer which composed it (for example in a computer game which 

generates mood music based on what is happening in the game).  

4. Playing data files - a large number of non-expressive data files in formats like MIDI and 

MusicXML [Hirata et al 2003] are available on the internet, and they are used by many musicians 

as a standard communication tool for ideas and pieces. Without CSEMPs most of these files will 

playback on a computer in an unattractive way, whereas the use of a CSEMP would make such 

files much more useful. 

5. Computer accompaniment tasks - it can be costly for a musician to play in ensemble. Musicians 

can practice by playing along to recordings with their solo part stripped out. But some may find it 

too restrictive since such recordings cannot dynamically follow the expressiveness in the soloist‟s 

performance. These soloists may prefer to play along with an interactive accompaniment system 

that not only tracks their expression but also generates its own expression.  

2. A GENERIC FRAME FOR PREVIOUS RESEARCH IN COMPUTER EXPRESSIVE 

PERFORMANCE 

Figure 1 shows a generic model for the framework that most (but not all) previous research into 

automated and semi-automated CSEMPs tends to have followed. The modules of this diagram are 

described beneath Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: Generic model for most current CSEMPs 
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Performance Knowledge - This is the core of any performance system. It is the set of rules or 

associations that controls the performance action. It is the “expertise” of the system which contains the 

ability, implicit or explicit, to generate an expressive performance. This may be in the form of an 

Artificial Neural Network, a set of cases in a Case-based Reasoning system, or a set of linear equation 

with coefficients. To produce performance actions, this module uses its programmed knowledge 

together with any inputs concerning the particular performance. Its main input is the Music / Analysis 

module. 

Music / Analysis - The Music / Analysis module has two functions. First of all, in all systems, it has the 

function of inputting the music to be played expressively (whether in paper score, MIDI, MusicXML, 

audio or other form) into the system. The input process can be quite complex, for example paper score 

or audio input will require some form of analytical recognition of musical events. This module is the 

only input to the Performance Knowledge module that defines the particular piece of music to be 

played. In some systems, it also has a second function – to provide an analysis of the musical structure. 

This analysis provides information about the Music Features of the music – for example metrical, 

melodic or harmonic structure. (It was mentioned earlier how it has been shown that such structures 

have a large influence on expressive performance in humans.) This analysis can then be used by the 

Performance Knowledge system to decide how the piece should be performed. Analysis methods used 

in some of the systems include Lerdahl and Jackendoff‟s Generative Theory of Tonal Music [Lerdahl 

and Jackendoff 1983], Narmour‟s Implication Realisation [Narmour 1990], and various bespoke 

musical measurements. The analysis may be automated, manual or a combination of the two. 

Performance Context - Another element which will effect how a piece of music is played is the 

performance context. This includes such things as how the performer decides to play a piece for 

example happy, perky, sad, or lovelorn. It can also include whether the piece is played in a particular 

style, e.g. baroque or romantic. 

Adaptation Process - The adaptation process is the method used to develop the Performance 

Knowledge. Like the Analysis module this can be automated, manual or a combination of the two. In 

some systems, a human expert listens to actual musical output of the performance system and decides if 

it is appropriate. If not then the Performance Knowledge can be adjusted to try to improve the musical 

output performance. This is the reason that in Figure 1 there is a line going from the Sound module 

back to the Adaptation Procedure module. The Adaptation Procedure also has inputs from Performance 

Context, Music / Analysis, Instrument Model, and Performance Examples. All 4 of these elements can 

influence the way that a human performs a piece of music, though the most commonly used is Music / 

Analysis and Performance Examples. 

Performance Examples - One important element that can be incorporated in the Performance 

Knowledge building is the experience of past human performances. These examples can be used by the 

Adaptation procedure to analyse when and how performance actions are added to a piece of music by 

human performers. The examples may be a database of marked-up audio recordings, MIDI files 

together with their source scores, or (in the manual case) a person‟s experience of music performance. 



 

Instrument Model - By far the most common instrument used in computer generated performance 

research is the piano. This is because it allows experiments with many aspects of expression, but 

requires only a very simple instrument model. In fact the instrument model used for piano is often just 

the MIDI/media player and soundcard in a PC. Alternatively it may something more complex but still 

not part of the simulation system, for example a Yamaha Disklavier. However a few simulation 

systems use non-keyboard instruments, for example Saxophone, and Trumpet. In these cases the issue 

of a performance is more than just expressiveness. Just simulating a human-like performance, even if it 

is non-expressive, on these instruments is non-trivial. So systems simulating expressive performance 

on such instruments may require a relatively complex instrument model in addition to expressive 

performance elements. 

3. A SURVEY OF PREVIOUS RESEARCH IN COMPUTER EXPRESSIVE PERFORMANCE 

The review presented here is meant to be representative rather than exhaustive but will cover the 

majority of published automated and semi-automated CSEMP systems to date. Table I lists the systems 

reviewed, together with information about their modules. This information will be explained in the 

detailed part of the review. A number of abbreviations are used in Table I and throughout the paper. 

Table II lists these abbreviations and their meaning. 

CSEMP Performance 

Knowledge 

Input Music Feature 

Analysis 

Performance 

Context 

Adaptation 

Procedure 

Performance 

Examples 

Instrumen

t 

Performance 

Actions 

Director Musices Rules  MIDI, 

Score 

Custom Mood space - MIDI 

Performances 

All (Piano) T/D/A/P 

Hierarchical 

Parabola Model 

Parabola 

equation  

MIDI, 

Score 

GTTM TSR  - - - Piano T/D 

Composer Pulse Multiplier set  MIDI - - Manual Tapping  All  T/D 

Bach Fugue Rules Score Custom - Manual Books, 

Experts 

Keyboard T/A 

Rubato Operators MIDI, 

Score 

Custom - Manual - All (Piano) T /D 

Trumpet 

Synthesis 

Linear model Audio, 

Score 

Custom - Manual Audio 

Performances 

Trumpet A/P/O 

Linear 

Regression 

Linear model MIDI , 

Score 

GTTM / Meyer  - Regression 

with ANDs 

Audio 

Performances 

Piano T/D/A 

ANN Piano  ANN MIDI Custom - ANN training MIDI 

Performances 

Piano T/D 

Music Plus One BBN Audio 

/ 

MIDI, 

Score 

Custom Soloist tempo BBN training Audio soloist 

performances 

All T/D 

SaxEx Fuzzy Rules Audio, 

Score 

Narmour / IR / 

GTTM, 

Custom 

Mood space CBR training Audio 

Performances 

by mood 

Saxophone T/D/V/K 

CARO Linear model Audio Custom Mood space PCA, Linear 

Regression 

Audio 

Performances 

by mood 

All  T/K/D/A 



 

 

Table I. Systems reviewed.  

 

 

Emotional Flute ANN and 

rules 

Audio, 

Score 

Custom Mood space ANN training Audio 

Performances 

by mood 

Flute T/D/V 

Kagurame Rules MIDI , 

Score 

Custom  Performance 

conditions 

CBR training MIDI 

Performances 

by context 

Piano T/D/A 

Ha-Hi-Hun Rules MIDI , 

Score 

GTTM TSR Language 

Performance 

conditions 

CBR training MIDI 

Performances 

by condition 

Piano T/D 

PLCG Learned rules MIDI , 

Score 

Custom - Meta- 

Sequential 

Learning 

MIDI 

Performances 

Piano T/D/A 

Phrase-

decomposition/ 

PLCG 

Learned rules MIDI,   

Score 

Custom, 

Harmonic by 

musicologist 

- CBR training, 

Meta- 

Sequential 

Learning 

MIDI 

Performances 

Piano T/D/A 

DISTALL CBR MIDI , 

Score 

Custom, 

Harmonic by 

musicologist 

- CBR training MIDI 

Performances 

Piano T/D/A 

Pop-E Ruled-based  MIDI , 

Score 

GTTM, 

Custom 

- - MIDI 

Performances 

Piano  T/D 

ESP Piano HMM MIDI , 

Score 

Custom - HMM 

training 

MIDI 

Performances 

Piano T/D/A 

Drumming Non-linear 

mapping 

Audio Custom - KRR, GPR, 

kNN 

Audio 

Performances 

Drums T 

Non-linear Piano 

System 

Non-linear 

mapping 

Worm, 

Score 

Custom - KCCA Performance

Worm 

Piano T/D 

Genetic 

Programming 

Regression 

trees 

Audio IR, Custom - Genetic 

programming 

Audio 

performances 

Saxophone T/D/A/N 

Sequential 

Covering GAs 

Rule-based Audio IR, Custom - Sequential 

covering by 

GA 

Audio 

performances 

Saxophone T/D/A 

Generative 

Performance 

GAs 

Pulse set MIDI , 

Score 

LBDM, 

Kruhmans, 

Melisma 

- GA None Piano T/D 

MAS with 

Imitation 

Pulse set MIDI , 

Score 

LBDM, 

Kruhmans, 

Melisma 

- Imitation  None Piano T/D 

Ossia Fitness rules MIDI - - - None Piano T/D/P 

Music 

Emotionality 

Linear model MIDI , 

Score 

Custom Mood space - Performances 

and  

Experiments 

Piano T/D/P/O 

pMIMACS Rule-based 

(2) 

MIDI Performance 

skill 

Excitability 

state 

Imitation None Piano T/D 



 

A Articulation 

ANN Artificial Neural Network 

BBN Bayesian Belief Network 

CBR Case-based Reasoning  

CSEMP Computer System for Expressive Music Performance 

D Dynamics 

DM Director Musices (KTH System) 

EC Evolutionary Computing 

GA Genetic Algorithm 

GP Genetic Programming 

GPR Gaussian Process Regression 

GTTM Lerdahl and Jackendoff‟s Generative Theory of Tonal Music 

HMM Hidden Markov Model 

IBL Instance-based Learning 

IR Narmour‟s Implication/Realisation Theory of Melody 

K Attack 

KCCA Kernel Canonical Correlation Analysis 

kNN k-Nearest Neighbour 

KRR Kernel Ridge Regression 

LBDM Local Boundary Detection Model of Cambouropoulos 

MAS Multi-agent System 

MES Music Emotionality System by Livingstone et al 

MIDI Musical Intrument Digital Interface 

MIMACS Mimetics-inspired Multi-agent Composition System 

MusicXML Music Extended Markup Language 

MIS Music Intepretation System by Katayose et al 

N Note addition/consolidation 

P Pitch 

PCA Principal Component Analysis  

T Tempo 

TSR Time Span Reduction Technique (from GTTM) 

V Vibrato 

 

Table II . Abbreviations 

 

Before discussing our primary terms of reference for this review, we first need to observe that the 

issue of evaluation of CSEMPs is an open problem. How does one evaluate what is essentially a 

subjective process? If the CSEMP is trying to simulate a particular performance, then correlation tests 

can be done. But even if the correlations are low for a generated performance, it is logically possible 



 

for the generated performance to be more preferable to some people than the original performance. 

[Papadopoulos and Wiggins 1999] discuss the evaluation issue in a different but closely related area - 

computer algorithmic composition systems. They list four points that they see as problematic in 

relation to such composition systems: 

 

1. The lack of evaluation by experts, for example professional musicians. 

2. Evaluation is a relatively small part of the research with respect to the length of the research 

paper. 

3. Many systems only generate melodies. How do we evaluate the music without a harmonic 

context? Most melodies will sound acceptable in some context or other. 

4. Most of the systems deal with computer composition as a problem solving task rather as a 

creative and meaningful process. 

 

All of these four points are issues in the context of computer systems for expressive performance 

as well. So from these observations we will extract three of our primary terms of reference for this 

review: Performance Testing Status (points 1 and 2), Non-monophonic Ability (point 3) and 

Performance Creativity (point 4). We will now examine these first three dimensions. 

Performance Testing Status refers to how and to what extent the system has been tested. It is 

important to emphasise that Testing Status is not a measure of how successful the testing was, but how 

extensive it was. There are 3 main approaches to CSEMP testing: (a) trying to simulate a particular 

human performance or an average of human performances, (b) trying to create a performance which 

does not sound machine-like, (c) trying to create as aesthetically pleasing a performance as possible. 

For the first of these, a correlation can be done between the computer performance and the desired 

target performance/performances. (However this will not be an “perceptually-weighted” correlation; 

errors may have a greater aesthetic/perceptual effect at some points than at others.) For approaches (b) 

and (c) we have listening tests by experts and non-experts. A wide variety of listening tests are used in 

CSEMPS, from the totally informal and hardly reported, to the results of formal competitions.  

Each year since 2002 a formal competition, that has been described as a “musical Turing Test”, 

called the RenCon (Contest for Performance Rendering Systems) Workshop, has been held [Hiraga et 

al 2004]. About a third of the systems we will review have been entered into a RenCon competition -  

see Table III  for the results. RenCon is a primarily piano-based competition for Baroque, Classical and 

Romantic music, and includes manual as well as automated systems (though the placings in Table III  

are displayed relative to automated and semi-automated CSEMPS, ignoring the manual submissions to 

RenCon.) Performances are graded and voted on by a jury of attendees from the sponsoring conference. 

Scores are given for “humanness”, and “expressiveness”, giving an overall “preference” score. It is the 

preference score we will focus on in the review. The size of RenCon juries, and their criteria have 

varied over time. In previous years (apart from its first year - 2002) RenCon did not have a separate 

autonomous section – it had two sections: Compulsory and Open, where compulsory was limited to a 

fixed piano piece for all contestants, and open was open to all instruments and pieces. In these 

competitions, automated CSEMPs went up against human pianists and renditions which were carefully 



 

crafted by human hand. Thus many past RenCon results are not the ideal evaluation for automated and 

semi-automated CSEMPs. However they are the only published common forum available, so in the 

spirit of points (1) and (2) from Papadopoulos and Wiggins, they will be referred to where possible in 

our review. 

 

 

 

 

 

 

 

 

 

 

 

Table III. RenCon placings of CSEMPS in this Paper 

 

From 2008 onwards the competition has three sections: an “autonomous” section, a “type-in” 

section and the open section. The autonomous section aims to only evaluate performances rendered by 

automated CSEMPs. Performances are graded by the composer of the test pieces as well as by a jury. 

For the autonomous section, the 2008 RenCon contestants are presented with two one-minute pieces of 

unseen music: one in the style of Chopin and one in the style of Mozart. An award will be presented for 

the highest scored performance and for the performance most preferred by the composer of the two test 

pieces. The type-in section is for computer systems for manually generating expressive performance.  

The third term of reference in this review, Performance Creativity, refers to the ability of the 

system to generate novel and original performances, as opposed to simulating previous human 

strategies. For example the Artificial Neural Network Piano system [Bresin et al 1990][Bresin 1998] is 

designed to simulate human performances (an important research goal), but not to create novel 

performances; whereas a system like Director Musices [Friberg et al 2006], although also designed to 

capture human performance strategies, has a parameterisation ability which can be creatively 

manipulated to generate entirely novel performances. There is an important proviso here – a system 

which is totally manual would seem at first glance to have a high creativity potential, since the user 

could entirely shape every element of the performance. However this potential may never be realised 

due to the manual effort required to implement the performance. Not all systems are able to act in a 

novel and practically controllable way. Many of the systems generate a model of performance which is 

basically a vector or matrix of coefficients. Changing this matrix by hand (“hacking it”) would allow 

the technically knowledgeable to creatively generate novel performances. However the changes could 

require too much effort, or the results of such changes could be too unpredictable (thus requiring too 

many iterations or “try outs”). So performance creativity includes the ability of a system to produce 

novel performances with a reasonable amount of effort. Having said that, simple controllability is not 

CSEMP RenCon Placings 

Director Musices 2002 (4th), 2004 compulsory  (1st) , 2005 compulsory (2nd) 

SuperConductor (includes 

Composer Pulse) 2004 open (1st), 2006 open (1st and 4th) 

Rubato 2004 open (4th) 

MIS 2002 (2nd) 

Music Plus One 2003 (1st) 

Kagurame 2002 (6th), 2004 compulsory  (3rd), 2006 compulsory (2nd) 

Ha-Hi-Hun 2002(5 th), 2004 compulsory (4th), 2006 compulsory (3rd) 

DISTALL 2002 (1st) 

Pop-E 2005 compulsory (1st), 2006 compulsory (1st), 2006 open (2nd and 3rd) 



 

the whole of Performance Creativity; for example there could be a CSEMP which has only 3 basic 

performances rules which can be switched on and off with a mouse click and the new performance 

played immediately. However the results of switching off and on the rules would in all likelihood 

generate a very uninteresting performance.  

So for performance creativity, a balance needs to exist between automation and creative flexibility, 

since in this review we are only concerned with automated and semi-automated CSEMPs. An example 

of such a balance would be an almost totally automated CSEMP, but with a manageable number of 

parameters that can be user-adjusted before activating the CSEMP for performance. After activating 

the CSEMP, a performance is autonomously generated but is only partially constrained by attempting 

to match past human performances. Such creative and novel performance is often applauded in human 

performers. For example Glenn Gould has created highly novel expressive performances of pieces of 

music and has been described as having a vivid musical imagination [Church 2004]. Expressive 

computer performance provides possibilities for even more imaginative experimentation with 

performance strategies.  

We will now add a fourth and final dimension to the primary terms of reference which – like the 

other three - also has parallels in algorithmic composition. Different algorithmic composition systems 

generate music with different levels of structural sophistication – for example some may just work on 

the note-to-note level, like [Kirke and Miranda 2008]. Whereas some may be able to plan at the higher 

structure level, generating forms like ABCBA, for example [Anders 2007]. There is an equivalent 

function in computer systems for expressive performance: Expressive Perception. Expressive 

Perception is the level of sophistication in the CSEMP‟s perception of the score. We have already 

mentioned the importance of the music‟s structure to a human expressive performance. A piece of 

music can be analysed with greater and greater levels of complexity. At its simplest it can be viewed a 

few notes at a time; or from the point of view of melody only. At its most complex the harmonic and 

hierarchical structure of the score can be analysed – as is done in Widmer‟s DISTALL system [Widmer 

and Tobudic 2003a; 2003b]. The greater the expressive perception of a CSEMP, the more of the music 

features it can potentially express.  

So to summarise, our 4 primary terms of reference will be: 

 

 Testing Status 

 Expressive Perception 

 Non-monophonic Ability 

 Performance Creativity 

 

At some point in our description of each system, these points will be implicitly or explicitly addressed, 

and are summarised at the end of the paper (see Table V). It is worth noting that these are not an 

attempt measure of how successful the system is overall, but an attempt to highlight some key issues 

which will help to show potential directions for future research.  

What now follows is the actual descriptions of the CSEMPs, divided into a number of groups. 

Each CSEMP is grouped according to how their performance model is built – i.e. by learning method. 



 

This provides a manageable division of the field, shows which learning methods are most popular, and 

shows where there is room for development in the building of performance models. The grouping will 

be: 

1. Non-learning (10 systems) 

2. Rule/Case-based learning (6 systems) 

3. Linear regression (2 systems) 

4. Non-linear regression (2 systems) 

5. Artificial Neural Networks (2 systems) 

6. Statistical Graphical Models (2 systems) 

7. Evolutionary computation (6 systems) 

 

3.1 Non-learning Systems 

3.1.1 Director Musices. Director Musices (DM) [Sundberg et al. 1983; Friberg et al. 2006] has been an 

ongoing project since 1982. Researchers including violinist Lars Fryden developed and tested 

performance rules using an analysis-by-synthesis method (later using analysis-by-measurement and 

studying actual performances). Currently there are around 30 rules which are written as relatively 

simple equations that take as input Music Features such as height of the current note pitch, the pitch of 

the current note relative to the key of the piece, or whether the current note is the first or last note of the 

phrase. The output of the equations defines the Performance Actions. For example the higher the pitch 

the louder the note is played, or during an upward run of notes, play the piece faster. Another DM rule 

is the Phrase Arch which defines a “rainbow” shape of tempo and dynamics over a phrase .The 

performance speeds up and gets louder towards the centre of a phrase and then tails off again in tempo 

and dynamics towards the end of the phrase. Some manual score analysis is required – for example 

harmonic analysis and marking up of phrase start and ends. DM‟s ability for expressive perception is at 

the note and phrase level – it does not use information at higher levels of the musical structure 

hierarchy.  

Each equation has a numeric “k-value” - the higher the k-value the more effect the rule will 

have and a k-value of 0 switches the rule off. The results of the equations are added together linearly to 

get the final performance. Thanks to the adjustable k-value system, DM has much potential for 

performance creativity. Little work has been reported on an active search for novel performances, 

though it is reported that negative k-values reverse rule effects and cause unusual performances. DM‟s 

ability as a semi-automated system comes from the fact it has a “default” set of k-values, allowing the 

same rule settings to be applied automatically to different pieces of music (though not necessarily with 

the same success). 

Rules are also included for dealing with non-monophonic music [Friberg et al. 2006]. To 

understand more deeply the issues raised by polyphonic expression, consider that each voice of an 

ensemble has its own melodic structure. Many monophonic methods described in our survey would 

lead to a number of voices each being given their own expressive timing deviations, causing de-

synchronization and cacophony. In DM, the “Melodic-sync” rule generates a new voice consisting of 



 

all timings in all other voices (if two voices have simultaneous notes, then the note with the greatest 

melodic tension is selected.) Then all rules are applied to this synchronisation voice, and resulting 

durations are mapped back onto the original voices. The “Bar-sync” rule can also be applied to make 

all voices re-synchronise at each bar end.  

DM is also able to deal with some Performance Contexts, specifically emotional expression 

[Bresin and Friberg 2000], drawing on work by Gabrielsson and Juslin [1996]. Listening experiments 

were used to define the k-value settings on the DM rules for expressing emotions. The music used was 

a Swedish nursery rhyme and a computer-generated piece in a minor mode written using Cope‟s [1992] 

algorithmic composition system in the musical style of Chopin. Six rules were used from DM to 

generate multiple performances of each piece. Subjects were asked to identify a performance emotion 

from the list: fear, anger, happiness, sadness, solemnity, tenderness or no-expression. As a result 

parameters were found for each of the 6 rules which mould the emotional expression of a piece. For 

example for “tenderness”: inter-onset interval is lengthened by 30%, sound level reduced by 6dB, and 

two other rules are used: the Final Ritardando rule (slowing down at the end of a piece) and the 

Duration Contrast rule (if two adjacent notes have contrasting durations, increase this contrast).  

Director Musices has a good test status, having been evaluated in a number of experiments. In 

[Friberg 1995] k-values were adjusted by a search algorithm, based on 28 human performances of 9 

bars of of Schumann‟s Träumerei. A good correlation was found between the human performances and 

the resulting DM performance. Another experiment involved manually fitting to one human 

performance the first 20 bars of the Adagio in Mozarts sonata K.332 [Sundberg et al 2003]. The 

correlations were found to be low, unless the k-values were allowed to change dynamically when the 

piece was performed. An attempt was made to fit k-values using to a larger corpus of piano music 

using Genetic algorithms in [Kroiss 2000], and the results were found to give a low correlation as well. 

In an attempt to overcome this [Zanon and De Poli 2003] allowed k-values to vary in a controlled way 

over a piece of music. This was tested on Beethoven‟s Sonatine in G Major and Mozart‟s K.332 piano 

sonata (the slow movement) – but the results were found to be poor for the Beethoven. In the first 

RenCon in 2002, the second prize went to a DM rendering, however the first placed system (a 

manually rendered performance) was voted for by 80% of the jury. In RenCon 2005, a Director 

Musices default-settings (i.e. automated) performance of Mozart‟s Minuette KV 1(1e) came a very 

close 2nd in the competition, behind Pop-E (Section 3.1.7). However 3 of the other 4 systems 

competing were versions of the DM-system.  

So the results have been mixed, perhaps because DM is a “building-block” approach to music 

performance, developed more out of a desire to learn about the building blocks of music performance, 

rather than finding an efficient way of putting them together. The DM model has been influential, and 

as will be seen in the later systems, DM-type rules appear again and again.  

 

3.1.2 Hierarchical Parabola Model. One of the first CSEMPs with a hierarchical expressive perception 

was Todd‟s Hierarchical Parabola Model [Todd 1985; Todd 1989; Todd 1992; Todd 1995]. Todd 

argues it was consistent with a kinematic model of expressive performance, where tempo changes are 

viewed as being due to accelerations and decelerations in some internal process in the human 



 

mind/body, for example the auditory system. For tempo the hierarchical parabola model uses a rainbow 

shape like DM‟s phrase arch, which is consistent with Newtonian kinematics. For loudness the model 

uses a “the faster the louder” rule, creating a dynamics rainbow as well. 

The key difference between DM and this hierarchical model is that the hierarchical model has 

greater expressive perception and wider performance action. Multiple levels of the hierachy are 

analysed using Lerdahl and Jackendoff‟s Generative Theory of Tonal Music (GTTM). GTTM Time 

Span Reduction (TSR) examines each note‟s musicological place in all hierarchical levels. The 

rainbows/parabolas are generated at each level, from the note-group level upwards (Figure 2) and 

added to get the performance. This generation is done by a parametrized parabolic equation which 

takes as input the result of the GTTM TSR analysis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Todd Parabola Model 

 

The performance was shown to correlate well by eye with a short human performance but no 

correlation figures were reported. [Clarke and Windsor 2000] tested the first four bars of Mozart‟s 

K.331; comparing two human performers with two performances by the Hierarchical Parabola model. 

Human listeners found the Parabola version unsatisfactory compared to the human ones. In the same 

experiment however, the Parabola model was found to work well on another short melody. The testing 

also showed that the idea of “the louder the faster” did not always hold. [Desain and Honing 1993] 

claim through informal listening tests that in general the performances do not sound convincing.  

Like DM, the Hierarchical Parabola Model is not purely designed to produce pleasant 

performances. It attempts to investigate a fundamental part of the expressive performance – hierarchy 

expression. The constraint of utilising the hierarchy and the GTTM TSR approach limits the 

Performance Creativity. Note groupings will be limited to those generated by a GTTM TSR analysis, 

and the parabolas generated will be constrained by the model‟s equation. Any adjustments to a 

performance will be constrained to working within this framework.  

 

3.1.3 Composer Pulse and Predictive Amplitude Shaping. Manfred Clynes‟ Composer Pulse [Clynes 

1986] also acts on multiple levels of the hierarchy. Clynes hypothesises each composer has a unique 

pattern of amplitude and tempo variations running through performances – a pulse. This is captured as 

a set of numbers multiplying tempo and dynamics values in the score. It is hierarchical with separate 

Tempo Parabolas 

Note Groupings 



 

values for within the beat, the phrase and at multiple bar level. Table III shows the values of pulses for 

phrase level for some composers. The pulses were measured using a sentograph to generate pressure 

curves from musicians tapping their finger whilst thinking of or listening to a specific composer. Figure 

3 shows the structure of a pulse set in three-time (each composer has a three-time and a four-time pulse 

set defined). This pulse set is repeatedly applied to a score end on end. So if the pulse is 12 beats long 

and the score is 528 beats, the pulse will repeat 528/12 = 44 times end on end. 

 

 
Level 2 Composers’ Pulses - 4 Pulse 

Beethoven 
Duration 

Amplitude 

106 

1.00 

89 

0.39 

96 

0.83 

111 

0.81 

Mozart 
Duration 

Amplitude 

105 

1.00 

95 

0.21 

105 

0.53 

95 

0.23 

Schubert 
Duration 

Amplitude 

97 

1.00 

114 

0.65 

98 

0.40 

90 

0.75 

Haydn 
Duration 

Amplitude 

108 

1.00 

94 

0.42 

97 

0.68 

102 

1.02 

Schumann 
Duration 

Amplitude 

96 

0.60 

116 

0.95 

86 

0.50 

102 

1.17 

Mendelssohn 
Duration 

Amplitude 

118 

1.00 

81 

0.63 

95 

0.79 

104 

1.12 

 
Table III. Level 2 Composers‟ Pulses 

 

 
 
 
 

 

 

 

 

 

 

Figure 3. Structure of a pulse set in three-time 

 
Another key element of Clyne‟s approach is Predictive Amplitude Shaping. This adjusts a 

note‟s dynamic based on the next note simulating “a musician's unconscious ability to sculpt notes in 

this way” that “makes his performance flow beautifully through time, and gives it meaningful 

coherence even as the shape and duration of each individual note is unique.” A fixed envelope shape 

model is used (some constants are manually defined by the user), the main inputs being distance to the 



 

next note and duration of the current note. So the Pulse/Amplitude system has only note level 

expressive perception.  

Clynes‟ test of his own model [Clynes 1995] showed that a number of expert and non-expert 

listeners preferred music with a composers pulse than with a different pulse. However not all tests on 

Clynes‟ approach have supported a universal pulse for each composer [Thompson 1989; Repp 1990], 

suggest instead that the pulse may be effective for a subset of a composer‟s work. Clynes‟ pulses and 

amplitude shaping have been combined with other performance tools (e.g. vibrato generation) as part 

of his commercial software SuperConductor. Two SuperConductor generated performances were 

submitted to RenCon 2006 open section: Beethoven‟s Eroica Symphony, Op.55, Mvt.4 and Brahms‟ 

Violin Concerto, Op.77, Mvt.1. The Beethoven piece scored low, but the Brahms piece came 1st in the 

open section (beating two pieces submitted by Pop-E - Section 3.1.7). The generation of this piece 

could have involved significant amounts of manual work were required. Also because it was the open 

section, the pieces submitted by Pop-E were not the same as submitted by SuperConductor – hence like 

was not compared to like. SuperConductor also won the open section in RenCon 2004 with J. S. Bach, 

Brandenburg Concerto No.5, D Major, 3rd Movement. The only competitor included from this review 

was Rubato (Section 3.1.6) performing a Bach piece. It should be re-emphasised that these results were 

for SuperConductor and not solely for the Pulse and Amplitude tools. 

In the context of SuperConductor, Clynes approach allows for significant Performance 

Creativity. The software is designed to allow a user to control the expressive shaping of a MIDI 

performance, giving significant amounts of control. However, outside of the context of 

SuperConductor, the pulse has little scope for performance creativity – though the amplitude shaping 

does.  The pulse and amplitude shaping do not explicitly address non-monophonic music, though 

SuperConductor can be used to generate polyphonic performances. 

 
3.1.4 Bach Fugue System. In the Bach Fugue System [Johnson 1991] Expert System methods are used 

to generate performance actions. Johnson generated the knowledge base through interviews with two 

musical expert performers, and through a performance practice manual and an annotated edition of the 

Well-Tempered Clavier; so this system is not designed for performance creativity. Twenty eight 

conditions for tempo and articulation are so-generated for the knowledge base. For example:  “If there 

is any group of 16th notes following a tied note, then slur the group of 16th notes following the long 

note.” Expressive perception is focused on the note to phrase level. The CSEMP does not perform itself, 

but generates instructions for 4/4 fugues. So testing was limited to examining the instructions. It gave 

the same instructions as human experts 85 to 90% of the time, though it is not said how many tests 

were run. The system is working in the context of polyphony. 

 

3.1.5 Trumpet Synthesis. Three out of the last four CSEMPs reviewed have focused on keyboard, and 

this pattern will continue through the paper - most CSEMPs focus on the piano because it is easier to 

collect and analyze data for the piano than for other instruments. One of the first non-piano systems 

was Dannenberg and Derenyi‟s Trumpet Synthesis [Dannenberg and Derenyi 1998; Dannenberg et al. 

1998]. The authors‟ primary interest here was to generate realistic trumpet synthesis, and adding 



 

performance factors improves this synthesis. It is not designed for performance creativity but for 

simulation. This trumpet system synthesizes the whole trumpet performance, without needing any 

MIDI or audio building blocks as the basis of its audio output. The performance actions are amplitude 

and frequency, and these are controlled by envelope models which were developed using a semi-

manual statistical analysis-by-synthesis method. A 10-parameter model was built for amplitude, based 

on elements such as articulation, direction and magnitude of pitch intervals, and duration of notes. This 

system works by expressively transforming one note at a time, based on the pattern of the surrounding 

two notes. In terms of expressive perception the system works on a 3 note width. The pitch expression 

is based on envelopes which were derived and stored during the analysis-by-synthesis.  

No test results are reported. Dannenberg and Derenyi placed two accompanied examples 

online: parts of a Haydn Trumpet Concerto and of a Handel Minuet. The start of the trumpet on the 

Concerto without accompaniment is also online, together with a human playing the same phrase. The 

non-accompanied synthesis sounds quite impressive, only being let down by a synthetic feel towards 

the end of the phrase – though the note-to-note expression (as opposed to the synthesis) consistently 

avoids sounding machine-like. In both accompanied examples it became clear as the performances 

went on that a machine was playing, particularly in faster passages. But once again note-to-note 

expression did not sound too mechanical. Despite the reasonably positive nature of these examples, 

there is no attempt to objectively qualify how good the trumpet system is.  

 

3.1.6 Rubato. Mazzola, a mathematician and recognised Jazz pianist, developed a mathematical theory 

of music [Mazzola 1994][Mazzola 2002]. Music is represented in an abstract geometrical space whose 

co-ordinates include onset time, pitch, and duration. A score will exist in this space, and expressive 

performances are generated by performing transformations on the space. The basis of these 

transformations are a series of “Operators” which can be viewed as a very generalised version of the 

rule-based approach taken in Director Musices. For example, the Tempo operator and the Split operator 

allow the generation of tempo hierarchies. These give Rubato a good expressive perception. However 

the definition of the hierarchy here differs somewhat from that found in the Hierachical Parabola 

Model or DISTALL (Section 3.2.6). A tempo hierarchy, for a piano performance, may mean that the 

tempo of the left hand is the dominant tempo, at the top of a hierarchy, and the right hand tempo is 

always relative to the left hand tempo – and so is viewed as being lower in the hierarchy. Mazzola also 

discusses the use of tempo hierarchies to generate tempo for grace notes and arpeggios – the tempo of 

these is relative to some global tempo higher in the hierarchy. Ideas from this theory have been 

implemented in a piece of software called Rubato, which is available online. The expressive 

performance module in Rubato is the “Performance Rubette”. A MIDI file can be loaded in Rubato and 

pre-defined operators used to generate expressive performances. The user can also manually 

manipulate tempo curves using a mouse and GUI, giving Rubato good scope for performance creativity.  

 Test reports are limited. In RenCon 2004, a performance of Bach‟s Contrapunctus III 

modelled using Rubato was submitted, and came 4th in the open section (SuperConductor came 1st in 

the section with a different piece). It is not clear how automated the generation of the performance was. 

Listening to the submission it can be heard that although the individual voices are quite expressive and 



 

pleasant (except for the fastest parts), the combination sounds relatively unrealistic. An online MIDI 

example is available of Schumann‟s Kindersezenen op. 15 Nr. 2, "Kuriose Geschichte" which 

evidences both tempo and dynamics expression and is quite impressive, though once again it is not 

clear how automated the production of the music was.  

 
3.1.7 Pop-E. Pop-E [Hashida et al. 2006], a Polyphrase Ensemble system, was developed by some of 

the team involved in MIS (Section 3.3.1). It applies expression features separately to each voice in a 

MIDI file, through a synchronisation algorithm. The music analysis uses GTTM local level rules, and 

utilizes beams and slurs in the score to generate note groupings. So the expressive perception is to up to 

phrase level. Expressive actions are applied to these groupings through rules reminiscent of Director 

Musices. The 5 performance rules have a total of 9 manual parameters between them. These parameters 

can be adjusted, providing scope for performance creativity. In particular jPop-E [Hashida et al 2007], 

a java implementation of the system provides such tools for shaping new performances.   

To deal with polyphony, Synchronisation Points are defined at the note grouping start and end 

points in the attentive part. The attentive part is that voice which is most perceptually prominent to a 

listener. The positions of notes in all other non-attentive parts are linearly interpolated relative to the 

synchronisation points (defined manually). This means that all parts will start and end at the same time 

at the start and end of groupings of the main attentive part.  

Pop-E was evaluated in the laboratory to see how well it could reconstruct specific human 

performances. After setting parameters manually, performances by three pianists were reconstructed. 

The average correlation values between Pop-E and a performer were 0.59 for tempo and 0.76 for 

dynamics. This has to be viewed in the context that the average correlations between the human 

performers were 0.4 and 0.55 respectively. Also the upper piano part was more accurate on average. (It 

is interesting to note that for piano pieces whose attentive part is the right hand, the Pop-E 

synchronisation system is similar to the methods in the DISTALL system for dealing with polyphony – 

see Section 3.2.6.) Pop-E won the RenCon 2005 compulsory section, beating Director Musices. In 

RenCon 2006 Pop-E won the compulsory section beating Kagurame (Section 3.2.2) and Ha-Hi-Hun 

(Section 3.2.3). In the open section in 2006 SuperConductor beat Pop-E with one performance, and lost 

to Pop-E with another.  

 

3.1.8 Hermode Tuning. In the next two sub-sections we will describe commercial CSEMPs. Despite the 

lack of details available on these proprietary systems we felt they should be included here since they 

are practical CSEMPs that people are paying money for, and illustrate some of the commercial 

potential of CSEMPs for the music business. However because of the lack of some details we will not 

attempt to apply the four review terms of reference. The first system is Hermode Tuning [Sethares 

2004]. Most systems in this review focus on dynamics and timing. However intonation is another 

significant area of expression for many instruments – for example many string instruments. (In fact, 

three intonation rules were added to Director Musices in its later incarnations; for example, the higher 

the pitch, the sharper the note.) Hermode Tuning is a dedicated expressive intonation system which can 

work in real time, its purpose being to “imitate the living intonation of well educated instrumentalists in 



 

orchestras and chamber music ensembles.” Instrumentalists do not perform in perfect intonation – in 

fact if an orchestra performed music in perfect tuning all the time the sound would be less pleasant than 

one that optimised its tuning through performance experience. A series of algorithms are using in 

Hermode tuning not just to avoid perfect intonation but to attempt to achieve optimal intonation. The 

algorithms have settings for different types of music, for example Baroque and Jazz/Pop. Examples are 

available on the website, and the system has been successful enough to be embedded in a number of 

commercial products – for example Apple Logic Pro 7.  

 

3.1.9 Sibelius. As mentioned in the introduction of this paper, the music typesetting software package 

Sibelius has built-in algorithms for expressive performance. These use a rule-based approach. Precise 

details are not available for these commercial algorithms but some information is available [Finn 2007]. 

For dynamics, beat groups such as barlines, sub-bar groups and beams are used to add varying degrees 

of stress. Also the higher the note is the louder it is played, though volume resets at rests and dynamic 

expression is constrained to not be excessive. Some random fluctuation is added to dynamics to make it 

more human-sounding as well. Tempo expression is achieved using a simple rubato system; however 

this rubato does not include reliable phrase analysis. The manufacturer reports that “phrasing need only 

be appropriate perhaps 70% of the time – the ear overlooks the rest” and that “the ear is largely fooled 

into thinking it‟s a human performance.” Notion and Finale also have expressive performance systems 

built into them, which are reportedly more advanced than Sibelius‟, but even fewer details are available 

for the proprietary methodologies in these systems. 

 

3.1.10. Music Emotionality System. In relation to the philosophy behind the Music Emotionality 

System (MES) [Livingstone et al 2007], Livingstone observes that “the separation of musical rules into 

structural and performative is largely an ontological one, and cedes nothing to the final audio 

experienced by the listener.”  The Music Emotionality System has a rule-set of 19 rules developed 

through analysis-by-synthesis. The rules have an expressive perception up to the phrase level, some 

requiring manual mark-up of the score. These rules are designed not only to inject microfeature 

deviations into the score to generate human-like performances, but also to use microfeature and 

macrofeature deviations to express emotions to the listener. To this end MES is able to change the 

score itself, recomposing it.  

MES has a 2-D model of human emotion space with four quadrants going from very active 

and negative to very active and positive, to very passive and positive through to very passive and 

negative. These four elements combine to give such emotions as angry, bright, contented and 

despairing. The quadrants were constructed from a review of 20 studies of music and emotion. The 

rules for expressing emotions include: moving between major and minor modes, changing note pitch 

classes, as well as DM-type rules for small changes in dynamics and tempo. It was found that the 

addition of the microfeature humanisation rules improved the accuracy of the emotional expression (as 

opposed to solely using macrofeature “recomposition” rules). The rules for humanising the 

performance include some rules which are similar to Director Musices, such as Phrase Arch and 

emphasising metrically important beats. Creative Performance is possible in MES by adjusting the 



 

parameters of the rule set, and the emotional specification would allow a user to specify different 

emotions for different parts of a performance.  

A significant number of formal listening tests have been done by Livingstone and they support 

the hypothesis that MES is more successful than DM at expressing emotions. MES is one of the better 

tested systems in this review – one reason being that its aim is more measurable than a purely aesthetic 

goal. Examples of MES are available on the author‟s webpage.  

3.2 Case and Instance-based Systems 

Case-based Reasoning is the first learning method we will address. Learning CSEMPs can incorporate 

more knowledge more quickly that non-learning systems. However such methods do not always 

provide tools for creative performance because they are strongly rooted in past performances. Before 

continuing we should explain that any CSEMP that learns expressive deviations needs to have a non-

expressive reference point, some sort of representation of the music played robotically/neutrally. The 

CSEMP can then compare this to the score played expressively by a human, and learn the deviations. 

 

3.2.1 SaxEx. Arcos and Lopez de Mantaras‟ SaxEx [Arcos et al. 1997; Arcos et al. 1998; Arcos and 

Mantaras 2001a; Arcos and Mantaras 2001b; Mantaras and Arcos 2002] was one of the first systems to 

learn performances based on the performance context of mood. Like the trumpet system described 

earlier (Section 3.1.5), SaxEx includes algorithms for extracting notes from audio files, and generating 

expressive audio files from note data. SaxEx also looks at intranote features like vibrato and attack. 

Unlike the trumpet system, SaxEx needs a non-expressive audio file to perform transformations upon. 

Narmour‟s IR theory is used to analyse the music. IR considers features of the previous two notes in 

the melody, and postulates that a human will expect the melody to move in a certain direction and 

distance; thus it can classify each note as being part of a certain expectation structure. Other elements 

used to analyse the music are ideas from Jazz theory, as well as GTTM TSR. This system‟s expressive 

perception is up to phrase level and is automated. 

SaxEx was trained on cases from monophonic recordings of a tenor sax playing 4 Jazz 

standards with different moods (as well as a non-expressive performance). The moods are designed 

around three dimensions: tender-aggressive, sad-joyful, and calm-restless. The mood and local IR, 

GTTM and Jazz structures around a note are linked to the expressive deviations in the performance of 

that note. These links are stored as performance cases. SaxEx can then be given a non-expressive audio 

file and told to play it with a certain mood.  A further AI method is used then to combine cases: Fuzzy 

Logic. For example - if two cases are returned for a particular note in the score and one says play with 

low vibrato, and the other says play with medium vibrato, then fuzzy logic combines them into a low-

medium vibrato. The learning of new CBR solutions can be done automatically or manually through a 

GUI, which affords some performance creativity giving the user a stronger input to the generation of 

performances. Though this is limited by SaxEx‟s focus on being a simulation system. There is, like the 

Music Emotionality System, the potential for the user to generate a performance with certain moods at 

different points in the music.  



 

There is no formal testing reported, but SaxEx examples are available online. The authors 

report “dozens” of positive comments about the realism of the music from informal listening tests, but 

no formal testing is reported or details given. The two short examples online (Sad and Joyful) sound 

realistic to us, more so than - for example - the trumpet system examples. But the accuracy of the 

emotional expression was difficult for us to gauge.    

 

3.2.2 Kagurame. Kagurame [Suzuki et al. 1999; Suzuki 2003] is another case-based reasoning system 

which – in theory - also allows expressiveness to be generated from moods, this time for piano. 

However it is designed to incorporate a wider degree of performance conditions than solely mood, for 

example playing in a Baroque or Romantic style. Rather than GTTM and IR, Kagurame uses its own 

custom hierarchical note structures to develop and retrieve cases for expressive performance. This 

hierarchical approach gives good expressive perception. Score analysis automatically divides the score 

into segments recursively with the restriction that the divided segment must be shorter than one 

measure. Hence manual input is required for boundary information for segments longer than one 

measure. The score patterns are derived automatically after this, as is the learning of expressive actions 

associated with each pattern. Kagurame acts on timing, articulation, and dynamics. There is also a 

polyphony action called Chord Time Lag –notes in the same chord can be played at slightly different 

times. It is very much a simulation system with little scope for creative performance. 

Results are reported for monophonic Classical and Romantic styles. Tests were based on 

learning 20 short Czerny etudes played in each style. Then a 21st piece was performed by Kagurame. 

Listeners said it “sounded almost human like, and expression was acceptable” and that the “generated 

performance tended to be similar to human, particularly at characteristic points.” A high percentage of 

listeners guessed correctly whether the computer piece was Romantic or Classical style. In RenCon 

2004 Kagurame came 4th in one half of the compulsory section, one ahead of Director Musices, but 

was beaten by DM in the second half, coming 5th. At RenCon 2006 a polyphonic performance of 

Chopin's piano Etude in E major came 2nd (with Pop-E taking 1st place).  

 

3.2.3 Ha-Hi-Hun. Ha-Hi-Hun [Hirata and Hiraga 2002] utilizes data structures designed to allow 

natural language statements to shape performance conditions (these include data structures to deal with 

non-monophonic music). The paper focuses on instructions of the form “render performance of piece X 

in the style of an expressive performance of piece Y”. As a result, there are significant opportunities for 

performance creativity through rendering a piece in the style of a very different second piece; or 

perhaps performing the second piece bearing in mind that it will be used to generate creative 

performances of the first piece. The music analysis of Ha-Hi-Hun uses GTTM TSR to highlight the 

main notes that shape the melody. TSR gives Ha-Hi-Hun an expressive perception above note level. 

The deviations of the main notes in the piece Y relative to the score of Y are calculated, and can then 

be applied to the main notes in the piece X to be performed by Ha-Hi-Hun. After this the new 

deviations in X‟s main notes are propagated linearly to surrounding notes like “expressive ripples” 

moving outwards. The ability of Ha-Hi-Hun to automatically generate expressive performances comes 

from its ability to generate a new performance X based on a previous human performance Y. 



 

In terms of testing, two pieces were rendered, each in the style of another piece and formal 

listening results were reported as positive, but few experimental details are given. In RenCon 2002 Ha-

Hi-Hun learned to play Chopin Etude Op.10, No. 3 through learning the style of a human performance 

of Chopin‟s Nocturne Op. 32, No. 2. The performance came 9th out of 10 submitted performances by 

other CSEMPs (many of which were manually produced). In RenCon 2004, Ha-Hi-Hun came last in 

the compulsory section, beaten by both Director Musices and Kagurame (Section 3.2.2). In RenCon 

2006, a performance by Ha-Hi-Hun also came third out of six in the compulsory section, beaten by 

Pop-E (Section 3.1.7) and Kagurame. 

 

3.2.4 PLCG System. Gerhard Widmer has applied various versions of a rule-based learning approach, 

attempting to utilise a larger database of music than previous CSEMPs. The PLCG system [Widmer 

2000; Widmer 2002; Widmer 2003] uses data mining to find large numbers of possible performance 

rules and cluster each set of similar rules into an average rule. This is a system for musicology and 

simulation rather than one for creative performance. PLCG is Widmer‟s own meta-learning algorithm 

– the underlying algorithm being Sequential Covering [Mitchell 1997]. PLCG runs a series of 

sequential covering algorithms in parallel on the same monophonic musical data, and gathers the 

resulting rules into clusters, generating a single rule from each cluster. The data set was thirteen Mozart 

Piano sonatas performed by Roland Batik in MIDI form (only melodies were used - giving 41,116 

notes). A note-level structure analysis learns to generate tempo, dynamics and articulation deviations 

based on the local context – e.g. size and direction of intervals, durations of surrounding notes, and 

scale degree. So this CSEMP has a note level expressive perception. As a result of the PLCG algorithm, 

383 performance rules were turned into just 18 rules. Interestingly, some of the generated rules had 

similarities to some of the Director Musices rule set. 

Detailed testing has been done on the PLCG, including its “Generalisation” ability (the ability 

for the system to perform music or composers that weren‟t explicitly included in its learning). 

Widmer‟s systems are the only CSEMPs reviewed here that have had any significant generalisation 

testing. The testing methods were based on correlation approaches. Seven pieces of the learning scores 

were regenerated using the rule set, and their tempo/dynamics profiles compared to the original 

performances very favourably. Regenerations were compared to performances by a different human 

performer Phillipe Entremont and showed no degradation relative to the original performer comparison. 

The rules were also applied to some music in a romantic style (two Chopin pieces), giving encouraging 

results. There are no reports of formal listening tests.  

 

3.2.5 Combined Phrase-decomposition/PLCG. The above approach was extended by Widmer and 

Tobudic into a monophonic system whose expressive perception extends into higher levels of the score 

hierarchy. This was the combined Phrase-decomposition/PLCG system [Widmer and Tobudic 2003]. 

(Once again this is a simulation system rather than one for creative performance.) When learning, this 

CSEMP takes as input scores that have had their hierarchical phrase structure defined to three levels by 

a musicologist (who also provides some harmonic analysis), together with an expressive MIDI 

performance by a professional pianist. Tempo and Dynamics curves are calculated from the MIDI 



 

performance, and then the system does a multi-level decomposition of these expression curves. This is 

done by fitting quadratic polynomials to the tempo and dynamics curves (like the curves in Todd‟s 

Parabola Model in Section 3.1.2).  

Once the lowest level fitting has been done, there is still a “residual” expression. This is 

hypothesised as being due to note-level expression, and the PLCG algorithm is run on the residuals to 

learn the note-level rules which generate this residual expression. The learning of the non-PLCG tempo 

and dynamics is done using a case-based learning type method - by a mapping from multiple-level 

features to the parabola/quadratic curves. An extensive set of music features are used including: length 

of the note group, melodic intervals between start and end notes, where the pitch apex of the note group 

is, whether the note group ends with a cadence, and the progression of harmony between start, apex 

and end. This CSEMP has the most sophisticated expressive perception of all the systems described in 

our review. 

To generate an expressive performance of a new score, the system moves through the score 

and in each part runs through all its stored features vectors learned from the training; it finds the closest 

one the using a simple distance measure. It then applies the curve stored in this case to the current 

section of the score. Data for curves at different levels, and results of the PLCG, are added together to 

give the expression performance actions.  

A battery of correlation tests were performed. Sixteen Mozart sonatas were used to test the 

system – training on 15 of them and then testing against the remaining one. This process was repeated 

independently selecting a new 1 of the 16 and then re-training on the other 15. This gave a set of 16 

results which the authors described as “mixed”. Dynamics generated by the system correlated better 

with the human performance than a non-expressive performance curve (straight line) did in 11 out of 

16, this was only case for 6 out of 16 for the timing curves. There are no reports of formal listening 

tests.  

 

3.2.6 DISTALL system. Widmer and Tobudic did further work to improve the results of the Combined 

Phrase-decomposition/PLCG, developing the DISTALL system [Widmer and Tobudic 2003a; 2003b] 

for simulation. The learned performance cases in the DISTALL system are hierarchically linked, in the 

same way as the note groupings they represent. So when the system is learning sets of expressive cases, 

it links together the feature sets for a level 3 grouping with all the level 2 and level 1 note groupings it 

contains. When a new piece is presented for performance, and the system is looking at a particular level 

3 grouping of the new piece, say X – and X contains a number of level 2 and level 1 subgroupings - 

then not only are the score features of X compared to all level 3 cases in the memory, but the 

subgroupings of X are compared to the subgroupings of the compared level 3 cases as well. There have 

been measures available which can do such a comparison in case-based learning before DISTALL (e.g. 

RIBL [Emde and Wettschereck 1996]). However DISTALL does it in a way more appropriate to 

expressive performance – giving a more equal weighting to subgroupings within a grouping, and giving 

this system a high expressive perception.  

Once again correlation testing was done with a similar set of experiments to Section 3.2.5. All 

16 generated performances had smaller dynamics errors relative to the originals than a robotic/neutral 



 

performance had. For tempo. 11 of the 16 generated performances were better than a robotic/neutral 

performance. Correlations varied from 0.89 for dynamics in Mozart K283 to 0.23 for tempo in Mozart 

K332. The mean correlation for dynamics was 0.7 and for tempo was 0.52. A performance generated 

by this DISTALL system was entered into RenCon 2002. The competition CSEMP included a simple 

accompaniment system where dynamics and timing changes calculated for the melody notes were 

interpolated to allow their application to the accompaniment notes as well. Another addition was a 

simple heuristic for rendering grace notes: the sum of durations of all grace notes for a main note is set 

equal to 5% of the main note‟s duration, and the 5% of duration is divided equally amongst the grace 

notes. The performance was the top scored automated performance at RenCon 2002 - ahead of 

Kagurame, MIS (Section 3.3.1) , and Ha-Hi-Hun - and it beat one non-automated system.  

3.3 Linear Regression 

Linear Regression models assume a basically linear relationship between the Music Features and the 

Expressive Actions. The advantage of such models is their simplicity, the disadvantage is that 

assuming music expressive performance a linear process is almost certainly an oversimplification.  

 
3.3.1 Music Interpretation System. The Music Interpretation Systems (MIS) [Aono et al 

1997][Ishikawa et al. 2000] generates expressive performances in MIDI format, but learns expressive 

rules from audio recordings. This is done using a spectral analysis system with dynamic programming 

for note detection. The system is a simulatory CSEMP and uses a set of linear equations which map 

score features on to performance deviation actions. Its expressive perception is on the note and phrase 

level. MIS has methods to include some non-linearities using logical ANDs between music features in 

the score, and a way of reducing redundant music features from its equations. This redundancy 

reduction improves generalisation ability. MIS learns links between music features and performance 

actions of tempo, dynamics, and articulation. The music features used include score expression marks, 

and aspects of GTTM and two other forms of musicological analysis: Leonard Meyer‟s Theory of 

Musical Meaning [Meyer 1957] and Narmour‟s IR Theory. Meyer‟s Theory – like Narmour‟s - is an 

expectation-based approach, but coming from the perspective of Game Theory.  

For testing, MIS was trained on the first half of a Chopin Waltz and then used to synthesize 

the second half. Correlations (accuracies when compared to a human performance of the second half) 

were: for velocity 0.87, for tempo 0.75, and for duration 0.92. A polyphonic MIS interpretation of 

Chopin, Op. 64, No. 2 was submitted to RenCon 2002. It came 3rd behind DISTALL beating 3 of the 

other 4 automated systems (DM, Kagurame, Ha-Hi-Hun).  

3.3.2 CARO. CARO [Canazza et al. 2000a; Canazza et al. 2000b; Canazza et al. 2003; Canazza et al. 

2004; de Poli 2004] is a monophonic CSEMP designed to generate audio files which – like SaxEx and 

MES - express certain moods/emotions. It does not require a score to work from, but works on audio 

files which are mood-neutral. The files are however assumed to include the performer‟s expression of 

the music‟s hierarchical structure. Its expressive perception is at the local note level. CARO‟s 

performance actions at the note and intra-note level include changes to inter-onset interval, brightness, 



 

and loudness-envelope centroid. A linear model is used to learn actions - every action has an equation 

characterised by parameters called Shift and Range Expansion. Every piece of music in a particular 

mood has its own set of Shift and Range Expansion values. This limits the generalisation potential. 

CARO also learns “how musical performances are organised in the listener‟s mind” in terms 

of moods: hard, heavy, dark, bright, light and soft. To do this, a set of listening experiments analysed 

by Principal Component Analysis (PCA) generates a two dimensional space that captures 75% of the 

variability present in the listening results; this space is used to represent listeners‟ experience of the 

moods. A further linear model is learned for each piece of music which maps the mood space onto 

Shift and Range Expansion values. The user can select any point in the mood space, and CARO 

generates an expressive version of the piece. A line can be drawn through mood space, and following 

that line in time CARO can generate a performance morphing through different moods. Apart from the 

ability to adjust Shift and Range expansion parameters manually, CARO‟s potential for creative 

performance is extended by its ability to have a line drawn through the mood space. Users can draw 

trajectories through this space to create entirely novel performances. 

For testing, 20 second clips each from 3 piano pieces by different composers were used. A 

panel of 30 listeners evaluated CARO‟s ability to generate pieces with different expressive moods. 

Results showed that the system gave a good modelling of expressive mood performances as realised by 

human performers.  

3.4 Non-linear Regression  

3.4.1 Drumming System. So far, we have surveyed pitched instruments – piano, saxophone and trumpet. 

We will now look at a system for non-pitched (drumming) expression.  In the introduction we talked 

about how pop music had enthusiastically utilised the “robotic” aspects of MIDI sequencers. However 

eventually pop musicians wanted a more realistic sound to their electronic music, and Humanization 

systems were developed for drum machines that added random tempo deviations to beats. Later 

systems also incorporated what are known as Grooves - a fixed pattern of tempo deviations which are 

applied to a drum beat or any part of a MIDI sequence (comparable to a one level Clynes pulse set, see 

3.1.3). Such groove systems have been very useful commercially in systems like Propellorhead Reason, 

where it is possible to generate Groove Templates from a drum track track and apply it to any other 

MIDI track [Carlson et al. 2003]. However just as some research has suggested limitations in the 

application of Clynes‟ composer pulses, so Wright and Berdahl‟s [2006] research shows the limits of 

groove templates. They did an analysis of multi-voiced Brazillian drumming recordings and found that 

groove templates could only account for 30% of expressive timing.  

They investigated other methods to capture the expressive timing using a system that learned 

from audio files. The audio features examined were a note‟s timbre, metric position and rhythmic 

context (i.e. timbres and relative temporal position of notes within 1 beat of the input notes – this gives 

a low expressive perception). The system learned to map these audio features onto the timing 

deviations of each non-pitched note; it is not designed to generate creative performances, but to 

simulate. The mapping model was based on non-linear regression between audio features and timing 

deviation (versus a quantized version of the beat). They tried three different methods of learning the 



 

mapping model: Kernel Ridge Regression, Gaussian Process Regression and and kNN methods. This 

learning approach was found to track the expressive timing of the drums much better than the groove 

templates, clearly demonstrated in their graphs showing the error over the drum patterns. All 3 learning 

methods were found to give approximately equal accuracy, though it was believed that Gaussian 

Process Regression had the greatest room for improvement. Examples are provided online. Note that 

the system is not only limited to Brazilian drumming, Wright and Berdahl also tested it on some 

Reggae rhythms with similar success.  

 

3.4.2 Non-linear Piano System. The most recent application of a non-linear regression methods to 

expressive performance is the system by [Dorard et al 2007]. Their main aim is simulatory, to imitate 

the style of a particular performer and allow new pieces to be automatically performed using the 

learned characteristics of the performer. A performer is defined based on the “Worm” representation of 

expressive performance [Dixon et al 2002]. The worm is a useful visualisation tool for the dynamics 

and tempo aspects of expressive performance. It uses a 2D representation with tempo on the x-axis and 

loudness on the y-axis. Then, as the piece plays, at fixed periods in the score (e.g. once per bar) an 

average is calculated for each period and a filled circle plotted on the graph at the average. Past circles 

remain on the graph, but their colour fades and size decreases as time passes – thus creating the illusion 

of a wriggling worm whose tail fades off into the distance in time. If the computer played an 

expressionless MIDI file then its worm would stand still, not wriggling at all.  

The basis of Dorard‟s approach is to assume that the score and the human performances of the 

score are two views of the musical semantic content, thus enabling a correlation to be drawn between 

the worm and the score. The system focuses on homophonic piano music – a continuous upper melody 

part and an accompaniment – and divides the score into a series of chord and melody pairs. Kernel 

Canonical Correlation Analysis (KCCA) is then used, a method which looks for a common semantic 

representation between two views. Its expressive perception is based on the note group level, since 

KCCA is looking to find correlations between short groups of notes and the performance worm 

position. An addition needed to be made to the learning algorithm to prevent extreme expressive 

changes in tempo and dynamics. This issue is a recurring problem in a number of CSEMPs (see the 

Artificial Neural Network Models in Section 3.5, Sibelius in Section 3.1.9, and also Section 3.7.3).  

 Testing was performed on Chopin‟s Etude 3 Opus 10 – the system was trained on the worm of 

the first 8 bars, and then tried to complete the worm for bars 9 to 12. The correlation between the 

original human performance worm for 9 to 12 and the reconstructed worm was measured to be 0.95 

(whereas the correlation with a random worm was 0.51). However the resulting performances were 

reported - through presumably informal listening tests - to not be very pleasant to listen to.  



 

3.5 Artificial Neural Networks  

Although many Artificial Neural Networks (ANNs) are just another form of non-linear regression, the 

connectionist visualisation has supported the development of new “architectures”. At least two 

CSEMPs have been produced using dynamic time-based ANN architectures.  

3.5.1 Artificial Neural Network Piano System. The earliest ANN approach is the Artificial Neural 

Network Piano System [Bresin et al 1990][Bresin 1998]. It has two incarnations. The first did not learn 

from human performers: a set of 7 monophonic Director Musice rules were selected, and two (loudness 

and timing) feedforward ANNs learned these rules through being trained on them. By learning a fixed 

model of Director Musices, the ANN loses the performance creativity of the k-values. When 

monophonic listening tests were done with 20 subjects, using Mozart‟s Piano Sonatas K331 and K281, 

the Director Musices performance was rated above the non-expressive computer performance, but the 

Neural Network performance rated highest of all. One explanation for the dominance of the ANN over 

the original DM rules was that the ANN generalised in a more pleasant way than the rules. The ANN 

system by Bresin was a simulation CSEMP which also used a separate loudness and timing feedback 

ANN. The ANNs were trained using actual pianist performances from MIDI, rather than on DM rules; 

but some of the independently learned rules turned out to be similar to some DM rules. Informal 

listening tests judged the ANNs as musically acceptable. The network looked at a context of four notes 

(loudness) and five notes (timing), so had note to phrase-level expressive perception, though it required 

the notes to be manually grouped into phrases before being input.   

3.5.2 Emotional Flute. The Camurri et al. [2000] Emotional Flute system uses explicit Music Features 

and Artificial Neural Networks, thus allowing greater generalisation than the related CARO system 

(Section 3.3.2). The music features are similar to those used in Director Musices. This CSEMP is 

strongly related to Bresin‟s second ANN, extending it into the non-piano realm and adding mood space 

modelling. Expressive actions include inter-onset interval, loudness, and vibrato. Pieces need to be 

segmented into phrases before being input - this segmentation is performed automatically by another 

ANN. There are separate nets for timing and for loudness – net designs are similar to Bresin‟s, and 

similar levels of expressive perception. There is also a third net for the duration of crescendo and 

decrescendo at the single note level. However the nets could not be successfully trained on vibrato, so a 

pair of rules were generated to handle it. A flautist performed the first part of Telemann‟s Fantasia no.2 

in nine different moods: cold, natural, gentle, bright, witty, serious, restless, passionate and dark. Like 

CARO a 2-D mood space was generated and mapped on to the performances by the ANNs, and this 

mood space can be utilised to give greater Performance Creativity.  

To generate new performances the network drives a physical model of a flute. Listening tests 

gave an accuracy of approximately 77% when subjects attempted to assign emotions to synthetic 

performances. To put this in perspective, even when listening to the original human performances, 

human recognition levels were not always higher than 77%; the description of emotional moods in 

music is a fairly subjective process.  



 

3.6 Statistical Graphical Models 

3.6.1 Music Plus One. The Music Plus One system [Raphael 2001a; Raphael 2001b; Raphael 2003] is 

designed to deal with non-piano and polyphonic performances. It has the ability to adjust performances 

of polyphonic sound files (e.g. orchestral works) to fit as accompaniment for solo performers. This 

CSEMP contains two modules: Listen and Play modules. Listen uses a Hidden Markov Model (HMM) 

to track live audio and find the soloist‟s place in the score in real time. Play uses a Bayesian Belief 

Network (BBN) which, at any point in a soloist performance and based on the performance so far, tries 

to predict the timing of the next note the soloist will play. Music Plus One‟s BBN is be trained by 

listening to the soloist. As well as timing, the system learns the loudness for each phrase of notes. 

However loudness learning is deterministic - it performs the same for each accompaniment of the piece 

once trained, not changing based on the soloist changing their own loudness. Expressive perception is 

at the note level for timing and phrase level for loudness.  

The BBN assumes a smooth changing in tempo, so for any large changes in tempo (e.g. a new 

section of a piece) need to be manually marked up. For playing MIDI files for accompaniment, the 

score needs to be divided up manually into phrases for dynamics; for using audio files for 

accompaniment such a division is not needed. When the system plays back the accompaniment it can 

play it back in multiple expressive interpretations dependent on how the soloist plays. So it has learned 

a flexible (almost tempo-independent) concept of the soloist‟s expressive intentions for the piece.  

There is no test reported for this system – the authors state their impression that the level of 

musicality obtained by the system is surprisingly good, and ask readers to evaluate the performance 

themselves by going to the website and listening. Music Plus One is actually being used by composers, 

and for teaching music students. It came first at RenCon 2003 in the compulsory section with a 

performance of Chopin's Prelude No. 15 "Raindrop", beating Ha-Hi-Hun, Kagurame, and Widmer‟s 

system. To train Music Plus One for this, several performances were recorded played by a human, 

using a MIDI keyboard. These were used to train the BBN.  The model was extended to include 

velocities for each note, as well as times, with the assumption that the velocity varies smoothly (like a 

random walk) except at hand-identified phrase boundaries.  Then a mean performance was generated 

from the trained model.  

As far as performance creativity goes, the focus on this system is not so much to generate 

expressive performances, as to learn the soloist‟s expressive behaviour and react accordingly in real 

time. However the system has an “implicit” method of creating new performances of the 

accompaniment – the soloist can change their performance during playback. There is another creative 

application of this system: multiple pieces have been composed for use specifically with the Music Plus 

One system - pieces which could not be properly performed without the system. One example contains 

multiple sections where a musician plays 7 notes while the other plays 11. Humans would find it 

difficult to do this accurately, whereas a soloist and the system can work together properly on this 

complicated set of polyrhythms. 

 



 

3.6.2 ESP Piano System. Grindlay‟s [2005] ESP Piano system is a polyphonic CSEMP designed – like 

Dorard‟s system (section 3.4.2) - to simulate expressive playing of pieces of piano music which consist 

of a largely monophonic melody, with a set of accompanying chords. A Hidden Markov Model learns 

expressive performance using music features such as whether the note is the first or last of the piece, 

the position of the note in its phrase, and the notes duration relative to its start and the next note‟s start 

(called its “articulation” here). The expressive perception is up to the phrase level. Phrase division is 

done manually, though automated methods are discussed. The accompaniment is analysed for a 

separate set of music features some of which are like the melody music features, and some of which are 

unique to chords – for example the level of consonance/dissonance of the code (based on a method 

called Euler‟s Solence). Music features are then mapped on to a number of expressive actions such as 

(for melody) the duration deviation, and the velocity of the note compared to the average velocity. For 

the accompaniment similar actions are used as well as some chord-only actions, like the relative onset 

of chord notes  (similar to the Kagurame Chord Time Lag, in section 3.2.2). These chordal values are 

based on the average of the values for the individual notes in the chord.  

Despite the focus of this system on homophony, tests were only reported for monophonic 

melodies, training the HMM on 10 graduate performances of Schumann‟s Träumerei. 10 out of 14 

listeners ranked the expressive ESP output over the inexpressive version. 10 out of 14 ranked the ESP 

output above that of an undergraduate performance. 4 out of 7 preferred the ESP output to a graduate 

student performance.  

3.7 Evolutionary Computation 

A number of more recent CSEMPs have used evolutionary computation methods. In general (but not 

always) such systems have interesting opportunities for performance creativity. They often have a 

parameterization that is simple to change – for example a fitness function. They also have an emergent 

result which can sometimes produce unexpected but coherent results.  

 

3.7.1 Genetic Programming Jazz Sax. Some of the first researchers to use EC in computer systems for 

expressive performance were Ramirez and Hazan. They did not start out using EC, beginning with a 

Regression Tree system for Jazz Saxophone first [Ramirez and Hazan 2005]. We will describe this 

before moving on to the Genetic Programming (GP) approach, as it is the basis of their later GP work. 

A performance Decision Tree was first built using C4.5 [Quinlan 1993]. This was built for 

musicological purposes – to see what kinds of rules were generated – not to generate any performances. 

The Decision tree system had a 3-note-level expressive perception, and music features used to 

characterise a note included metrical position and some Narmour IR analysis. These features were 

mapped on to a number of performance actions from the training performances, such as 

lengthen/shorten note, play note early/late and play note louder/softer. Monophonic audio was used to 

build this decision tree using the authors‟ own spectral analysis techniques and five Jazz standards at 

11 different tempos. The actual performing system was built as a Regression rather than Decision Tree, 

thus allowing continuous expressive actions. The continuous performance features simulated were 

duration, onset, and energy variation (i.e. loudness). The learning algorithm used to build the tree was 



 

M5Rules[Witten and Frank 2000] and performances could be generated via MIDI and via audio thanks 

to the synthesis algorithms. In tests, the resulting correlations with the original performances were 0.72, 

0.44 and 0.67 for duration, onset and loudness respectively. Other modelling methods where tried 

(linear regression and 4 different forms of Support Vector Machines) but didn‟t fare as well 

correlation-wise.  

 Ramirez and Hazan‟s next system [Hazan and Ramirez 2006] was also based on Regression 

Trees, but these trees were generated using Genetic Programming (GP), which is ideal for building a 

population of “if-then” Regression Trees. GP was used to search for Regression Trees which best 

emulated a set of human audio performance actions. The Regression Tree models were basically the 

same as in their previous paper, but in this case a whole series of trees was generated, they were tested 

for fitness and then the fittest were used to produce the next generation of trees/programs (with some 

random mutations added). Fitness was judged based on a distance calculated from a human 

performance. Creativity and expressive perception are enhanced because, in addition to modelling 

timing and dynamics, the trees modelled the expressive combining of multiple score notes into a single 

performance note (consolidation), and the expressive insertion of one or several short notes to 

anticipate another performance note (ornamentation). These elements are fairly common in Jazz 

Saxophone. It was possible to examine these deviations because the fitness function was implemented 

using an Edit Distance [Levenshtein 1966] to measure score edits.  

This evolution was continued until average fitness across the population of trees ceased to 

increase. The use of GP techniques was deliberately applied to give a range of options for the final 

performance since, as the authors say - “performance is an inexact phenomenon”. Also because of the 

mutation element in Genetic Programming, there is the possibility of unusual performances being 

generated. So this CSEMP has quite a good potential for performance creativity. No evaluation was 

reported of the resulting trees‟ performances - but average fitness stopped increasing after 20 

generations. 

3.7.2 Sequential Covering Algorithm GAs. The Sequential Covering Algorithm Genetic Algorithm (GA) 

[Ramirez and Hazan 2007] uses the Sequential Covering to learn performance. Each covering rule is 

learned using a GA; and a series of such rules are built up covering the whole problem space. In this 

paper the authors return to their first (non-EC) paper‟s level of expressive perception - looking at note 

level deviations without ornamentation or consolidation. However they make significant improvements 

over their original non-EC paper. The correlation coefficients for onset, duration, and energy/loudness 

in the original system were 0.72, 0.44 and 0.67 – but in this new system they were 0.75, 0.84 and 0.86 

–significantly higher. And this system also has the advantage of slightly greater creativity due to its GA 

approach.  

3.7.3 Generative Performance GAs. A parallel thread of EC research is the Zhang and Miranda‟s 

[2006a; 2006b] monophonic Generative Performance GAs which evolve Pulse Sets (see Section 3.1.3). 

Rather than comparing the generated performances to actual performances, the fitness function here 

expresses constraints inspired by the generative performance work of Eric Clarke [1998]. When a score 

is presented to the GA system for performance, the system constructs a theoretical timing and 



 

dynamics deviation curve for the melody (one advantage of this CSEMP being that this music analysis 

is automatic). However this curve is not used directly to generate the actual performance, but to 

influence the evolution. This, together with the GA approach, increases the performance creativity of 

the system. The timing deviation curve comes from an algorithm based on Cambouropoulos‟ [2001] 

Local Boundary Detection Model (LBDM) – the inputs to this model are score note timing, pitch and 

harmonic intervals. The resulting curve is higher for greater boundary strengths. The approximate 

dynamics curve is calculated from a number of components – the harmonic distance between two notes 

(based on a measure by Krumhans [1991]), the metrical strength of a note (based on the Melisma 

software [Temperley and Sleator 1999]), and the pitch height. These values are multiplied for each note 

to generate a dynamics curve. The expressive perception of this system is the same as the expressive 

perception of the methodologies used to generate the theoretical curves. 

A fitness function is constructed referring to the score perception curves. It has 3 main 

elements – fitness is awarded if:  (1) the pulse set dynamics and timing deviations follow the same 

direction as the generated dynamics and timing curves; (2) timing deviations are increased at 

boundaries; (3) timing deviations are not too extreme. Part (1) does not mean that the pulse sets are the 

same as the dynamics and timing curves, but – all else being equal - that if the dynamic curve moves up 

between two notes, and the pulse set moves up between those two notes, then that pulse set will get a 

higher fitness than one that moves down there. Regarding point (3) – this is reminiscent of the 

restriction of expression used in the ANN models and the non-Linear Piano model described earlier. It 

is designed to preventing the deviations from becoming too extreme.   

There has been no formal testing of this GA work, though the authors demonstrate - using an 

example of part of Schumann‟s Träumerei and a graphical plot - that the evolved pulse sets are 

consistent in at least one example with the theoretical timing and dynamics deviations curves. They 

claim that “when listening to pieces performed with the evolved pulse sets, we can perceive the 

expressive dynamics of the piece.” However, more evaluation would be helpful because repeating 

pulse sets as the expressive action format have been shown to not be universally applicable, and post-

Clynes CSEMPs have shown more success using non-cyclic expression.  

 

3.7.4 Multi-Agent System with Imitation. Zhang and Miranda [2007] developed the above into a Multi-

Agent System (MAS) with Imitation – influenced by Miranda‟s [2003] evolution of music MAS study, 

and inspired by the hypothesis that expressive music performance strategies emerge through interaction 

and evolution in the performers‟ society. In this model each agent listens to other agents‟ monophonic 

performances, evaluates them, and learns from those whose performances are better than their own. 

Every agent‟s evaluation equation is the same as the fitness function used in the previous GA paper, 

and performance deviations are modelled as a hierarchical pulse set. So it has the same expressive 

perception. When an agent hears a performance it evaluates as being better than its own, it attempts to 

imitate it but ends up giving a slightly mutated performance. This imitating agent then generates a 

pulse set internally that matches its mutated performance. So pulse sets are not exchanged, 

performances are (just as humans imitate behaviour, not neural and underlying biological processes). 

The performances of the system, which were generated through 100 generations of imitation, were 



 

once again not evaluated by the researchers. Though it was found that the imitation approach generated 

performances more slowly than the previous GA approach.  

This CSEMP has significant performance creativity, one reason being that the pulse sets 

generated may have no similarity to the hierarchical constraints of human pulse sets. They are 

generated mathematically and abstractly from agent imitation performances. So entirely novel pulse set 

types could be produced by agents that a human would never generate. Another element that 

contributes to creativity is that although a global evaluation function approach was used, a diversity of 

performances was found to be produced in the population of agents.  

This Zhang/Miranda MAS system has much potential for future work.  For example, an 

approach could be investigated that allowed each agent to have its own evaluation function; with some 

agents actually basing their evaluation on comparing with human performances. Furthermore, some 

agents could be equipped with entirely novel non-human-fitness evaluation functions. Thus by altering 

the proportion of agents with different types of evaluation functions, different types of performances 

could be generated in the population. Another possibility would be to allow more direct user 

intervention in shaping performances by letting the user become an agent in the system themselves.  

3.7.5 Ossia. Like the Music Emotionality System (Section 3.1.10), Dahlstedt‟s [2007] Ossia is a 

CSEMP which incorporates both  compositional and performance aspects. However, whereas MES 

was designed to operate on a composition, Ossia is able to generate entirely new and expressively 

performed compositions. Although we have grouped it as an EC learning system, technically Ossia is 

not a learning system. It is not using EC to learn how to perform like a human, but to generate novel 

compositions and performances. However we include it in this section because its issues relate more 

closely to EC and learning systems than to any of the non-learning systems (the same reason applies for 

the system described in the next subsection 3.7.6). Ossia generates music through a novel 

representational structure that encompasses both composition and performance – Recursive Trees 

(generated by GAs). These are “upside down trees” containing both performance and composition 

information. The bottom leaves of the tree going from left to right represent actual notes (each with 

their own pitch, duration and loudness value) in the order they are played. The branches above the 

notes represent transformations on those notes. To generate music the tree is flattened – the “leaves” 

higher up act upon the leaves lower down when being flattened to produce a performance/composition. 

So going from left to right in the tree represents music in time. The trees are generated recursively – 

this means that the lower branches of the tree are transformed copies of higher parts of the tree. Here 

we have an element we argue is the key to combined performance and composition systems - a 

common representation – in this case transformations.  

This issue of music representation is not something we have addressed explicitly in this 

review, being in itself an issue worthy of its own review, for examples see [Dannenberg 1993][Anders 

2007]. However we will take a moment now to briefly discuss it. The representation chosen for a 

musical system has a significant impact on the functionality – Ossia‟s representation is what leads to its 

combined composition and performance generation abilities. The most common music representation 

mentioned in this review has been MIDI, which is not able to encode musical structure directly. As a 



 

result some MIDI-based CSEMPs have to supply multiple files to the CSEMP, a MIDI file together 

with files describing musical structure. More flexible representations than MIDI include MusicXML, 

ENP-score-notation [Laurson and Kuuskankare 2003], WEDEMUSIC XML [Hirata et al 2003], 

MusicXML4R [Hashida et al 2006], and the proprietary representations used by commercial software 

such as Sibelius, Finale, Notion, and Zenph High-Resolution MIDI [LaVerne 2006] (which was 

recently used on a released CD of automated Disklavier re-performances of Glenn Gould).  

Many of the performance systems we have described so far transform an expressionless MIDI 

or audio file into an expressive version. Composition is often done in a similar way – motifs are 

transformed into new motifs, and themes are transformed into new expositions. Ossia uses a novel 

transformation-based music representation. In Ossia, transformations of note, loudness and duration are 

possible – the inclusion of note transformations here emphasising the composition aspect of the Ossia. 

The embedding of these transformations into recursive trees leads to the generation of gradual 

crescendos, decrescendos and duration curves – which sound like performance strategies to a listener. 

Because of this Ossia has a good level of performance creativity. The trees also create a structure of 

themes and expositions. Ossia uses a GA to generate a population of trees, and judges for fitness using 

such rules as number of notes per second, repetivity, amount of silence, pitch variation, and level of 

recursion. These fitness rules were developed heuristically by Dahlstedt through analysis-by-synthesis 

methods. 

Ossia‟s expressive perception is equal to its compositional perception. Dahlstedt observes 

“The general concept of recapitulation is not possible, as in the common ABA form. This does not 

matter so much in short compositions, but may be limiting.” So Ossia‟s perception would seem to be 

within the A‟s and B‟s, giving it a note to section level expressive perception. In terms of testing – the 

system has not been formally evaluated; though it was exhibited as an installation at Gaudeamus Music 

Week in Amsterdam. Examples are also available on the website, including a composed suite. The 

author claims that the sound examples “show that the Ossia system has the potential to generate and 

perform piano pieces that could be taken for human contemporary compositions.” Having listened to 

examples on the website, we were impressed by their natural quality. The question of how to test a 

combined performance and composition, when that system is not designed to simulate but to create, is 

a sophisticated problem which we will not try to address here. Certainly listening tests are a possibility 

but these may be biased by the preferences of the listener (e.g. preferring pre-1940s classical music, or 

pop music). Another approach is musicological analysis but the problem then becomes that 

musicological tools are not available for all genres and all periods – for example musicology is more 

developed for pre-1940 that post-1940 art music.  

An example score from Ossia is described which contains detailed dynamics and articulations, 

and subtle tempo fluctuations and rubato. This subtlety raises another issue – scores generated by Ossia 

in common music notation had to be simplified to be simply readable by humans. The specification of 

exact microfeatures in a score can lead to it being unplayable except by computer or the most skilled 

concert performer. This has a parallel in a compositional movement which emerged in the 1970s “The 

New Complexity”, involving composers such as Brian Ferneyhough and Richard Barret [Toop 1988] 

In ”The New Complexity” elements of the score are often specified down to the microfeature level, and 



 

some scores are described as almost unplayable. Compositions such as this, whether by human or 

computer, bring into question the whole composition/performance dichotomy. (These issues also recall 

the end of Ian Pace‟s quote in the first section of this review.) However, technical skill limitations and 

common music notation scores are not necessary for performance if the piece is being written on and 

performed by a computer. Microfeatures can be generated as part of the computer (or computer-aided) 

composition process if desired. In systems such as Ossia and MES (Section 3.1.10), as in The New 

Complexity, the composition/performance dichotomy starts to break down - the dichotomy is really 

between macrofeatures and microfeatures of the music.  

 

3.7.6 pMIMACS. Before discussing the final system in this survey, we will highlight another 

motivation for bringing composition and performance closer in CSEMPs. A significant amount of 

CSEMP effort is in analysing the musical structure of the score/audio. However, many computer 

composition systems generate a piece based on some structure which can often be made explicitly 

available. So in computer music it is often inefficient to have separate composition and expressive 

performance systems – where a score is generated and CSEMP sees the score as a black box and 

performs a structure analysis. Greater efficiency and accuracy would require a protocol allowing the 

computer composition system to communicate structure information directly to the CSEMP, or – like 

Ossa - simply combine the systems using for example a common representation (where microtiming 

and microdynamics are seen as an actual part of the composition process). A system which was 

designed to utilise this combination of performance and composition is pMIMACS, developed by the 

authors of this survey. It is based on a previous system MIMACS (Mimetics-Inspired Multi-agent 

Composition System), which was developed to solve a specific compositional problem (generating a 

multi-speaker spatial composition).  

pMIMACS combines composition and expressive performance – the aim being to generate 

contemporary compositions on a computer which when played back on a computer do not sound too 

machine like. In Zhang/Miranda‟s system (Section 3.7.4) the agents imitate each others‟ expressive 

performances, whereas in pMIMACS agents can be performing entirely different pieces of music. The 

agent cycle is a process of singing and assimilation. Initially all agents are given their own tune – these 

may be random or chosen by the composer. An agent (A) is chosen to start. A  performs its tune, based 

on its “performance skill” (explained below). All other agents listen to A and the agent with the most 

similar tune, say agent B, adds its interpretation of A‟s tune to the start or end of B‟s current tune. There 

may be pitch and timing errors due to its “mishearing”. Then the cycle begins again, but with B 

performing its extended tune in the place of A.  

An agent‟s initial performing skills are defined by the average pitch and standard deviation of their 

initial tune - this could be interpreted as the tune they are familiar with performing, or as the range they 

are comfortable performing in. The further away a note‟s pitch is from the agent‟s average learned 

pitch, the slower the tempo at which the agent will perform. Also, further away pitches will be played 

more quietly. An agent updates its skill/range as it plays. Every time it plays a note, that note changes 

the agent‟s average and standard deviation pitch value. So when an agent adds an interpretation of 

another agent‟s tune to its own, then as the agent performs the new extended tune its average and 



 

standard deviation (skill/range) will update accordingly – shifting and perhaps widening - changed by 

the new notes as it plays them. In pMIMACS an agent also has a form of performance context, called 

an Excitability State. An “excited” agent will play its tune with twice the tempo of an “unexcited” 

agent, making macro-errors in pitch and rhythm as a result.  

The listening agent has no way of knowing whether the pitches, timings and amplitude that it is 

hearing are due to the performance skills of the performing agent, or part of the “original” composition. 

So the listening agent attempts to memorize the tune as it hears it, including any performance errors or 

changes. As the agents perform to each other, they store internally and exponentially growing piece of 

transforming music. The significant and often smooth deviations in tempo generated by the 

performance interaction will create a far less robotic-sounding performance than rhythms generated by 

a quantized palette would do. On the downside, the large-scale rhythmic texture has the potential to 

become repetitive because of the simplicity of the agents‟ statistical model of performance skill. 

Furthermore the system can generate rests that are so long that the composition effectively comes to a 

halt for the listener. But overall the MAS is expressing its experience of what it is like to perform the 

tune, by changing the tempo and dynamics of the tune; and at the same time this contributes to the 

composition of the music. No formal listening tests have been completed yet, but examples of an 

agent‟s tune memory after a number of cycles can be listened to at: 

http://cmr.soc.plymouth.ac.uk/pmimacs. 

There is also a more subtle form of expression going on relating to the hierarchical structure of the 

music. The hierarchy develops as agents pass around an ever growing string of phrases. Suppose an 

agent performs a phrase P and passes it on. Later on it may receive back a “super-phrase” containing 

two other phrases Q and R – in the form QPR. In this case A will perform P faster than Q and R (since 

it knows P). Now suppose in future A is passed back a super-super-phrase of, say, SQPRTQPRTS, then 

potentially it will play P fastest, QPR second fastest (since it has played QPR before) and the S and T 

phrases slowest. So the tempo and amplitude at which an agent performs the parts SQPRTQPRTS is 

affected by how that phrase was built up hierarchically in the composition/imitation process. Thus there 

is an influence on the performance from the hierarchical structure of the music. This effect is only 

approximate because of the first order statistical model of performance skill.  

Despite the lack of formal listening tests, we report pMIMACS here as a system designed from the 

ground up to combine expressive performance and composition. 

4. SUMMARY  

We began our review of automated and semi-automated computer systems for expressive performance, 

by developing four terms of reference which were inspired from research into computer composition 

systems, and we have brought it to a close with a pair of systems that question the division between 

expressive performance and composition. So there are clearly opportunities for to these two areas to 

learn from each other in the context of computer music. Before we summarise further, another viewing 

of Table I at the start of the review may be helpful to the reader.  

Expressive Performance is a complex behaviour with many causative conditions – so it is no 

surprise that in this review that more than half the systems produced have been learning CSEMPS, 

http://cmr.soc.plymouth.ac.uk/pmimacs


 

usually learning to map music features on to expressive actions. Expressive performance actions most 

commonly included timing and dynamics adjustments, with some articulation, and the most common 

non-custom method for analysis of music features was GTTM, followed by IR. Dues to its simplicity in 

modelling performance, the most common instrument simulated was piano – but interestingly this was 

followed closely by saxophone – possibly because of the popularity of the instrument in the Jazz genre. 

Despite, and probably because, of its simplicity - MIDI is still the most popular representation.  

To help structure the review, four primary terms of reference were selected:  Testing Status, 

Expressive Perception, Non-monophonic Ability, and Performance Creativity. Having applied these, it 

can be seen that only a subset of the systems have had any formal testing, and for some of them 

designing formal tests is a challenge in itself. This is not that unexpected – since testing a creative 

computer system is an unsolved problem. Also about half of the systems were only been tested on 

monophonic tunes. Polyphony and Homophony introduce problems both in terms of synchronisation 

and in terms of music feature analysis. Further to music feature analysis, most of the CSEMPs had an 

expressive perception up to one bar/phrase, and over half did not look at the musical hierarchy. 

However avoiding musical hierarchy analysis can have the advantage of increasing automation. We 

have also seen that most CSEMPs are designed for simulation of human expressive performances, 

general or specific – a valuable research goal, and one which has possibly been influenced by the 

philosophy of human simulation in machine intelligence research.  

The results for the primary terms of reference are summarized in Table V. The numerical 

measures in columns 1,2 and 4 are an attempt to quantify observations, scaled from 1 to 10. The more 

sophisticated the expressive perception of music features (levels of the hierarchy, harmony, etc), the 

higher the number in column 1. The more extensive the testing (including informal listening, RenCon 

submission, formal listening, correlation and/or successful utilisation in the field) the higher the 

number in column 2. The greater we perceived the potential of a system to enable the creative 

generation of novel performances, the higher the number in column 4. Obviously such measures 

contain some degree of subjectivity but should be a useful indicator for anyone wanting an overview of 

the field, based on the 4 elements discussed at the start of this paper. Figure 4 shows a 3D plot of 

summary table V. 

 

5. CONCLUSIONS 

There have been significant achievements in the field of simulating human musical performance in the 

last 25 years, and there many opportunities ahead for future improvements in simulation. In fact one 

aim of the RenCon competitions is for a computer to win the Chopin competition by 2050. Such an aim 

begs some philosophical and historical questions, but nonetheless captures the level of progress being 

made in performance simulation. The areas of expressive perception and non-monophonic performance 

appear to be moving forwards. However the issue of testing and evaluation still requires more work and 

would be a fruitful area for future CSEMP research.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table V. Summary of the 4 primary terms of reference 

 

 Another fruitful area for research is around the issue of the automation of the music analysis. 

Of the eight CSEMPs with the highest expressive perception, almost half of them require some manual 

input to perform the music analysis. Also manual marking of the score into phrases is a common 

requirement. There has been some research into automating musical analysis such as GTTM 

[Masatoshi et al 2005]. The usage of such techniques, and the investigation of further automation 

analysis methods specific to expressive performance, would be a useful contribution to the field.   

 

 

 

 

 

CSEMP Expressive 

Perception 

Testing Status Non-

monophonic 

Performance 

Creativity  

Director Musices 6 10 Y 8 

Hierarchical Parabola Model 9 7  3 

Composer Pulse 6 9 Y 5 

Bach Fugue 6 4 Y 3 

Rubato 6 4 Y 8 

Trumpet Synthesis 4 1  3 

MIS 6 6 Y 3 

ANN Piano  4 6  3 

Music Plus One 4 7 Y 4 

SaxEx 6 1  8 

CARO 3 6  7 

Emotional Flute 4 6  6 

Kagurame 9 8 Y 3 

Ha-Hi-Hun 6 6 Y 8 

PLCG 4 6  3 

Phrase-decomposition/ 

PLCG 10 6 

 

3 

DISTALL 10 9 Y 3 

Pop-E 6 10 Y 8 

ESP Piano 6 6 Y ( untested) 3 

Non-linear Piano 4 6 Y 3 

Drumming 3 6  3 

Genetic Programming 7 6  6 

Sequential Covering GAs 6 6  6 

Generative Performance GAs 9 4  8 

MAS with Imitation 9 1  9 

Ossia 6 4 Y 10 

Music Emotionality 6 6 Y 10 

pMIMACS 9 1  10 



 

Figure 4. Evaluation of Reviewed systems relative to terms of reference („+‟ means Non-monophonic) 

 

 

The field could also benefit from a wider understanding of the convergence of performance 

and composition elements in computer music. For reasons of efficiency, controllability and creativity 

which have already been detailed, research into combined performance/composition systems would be 

a fertile area for further computer music research. Here computer composition and computer 

performance research can cross-fertilise: performance algorithms for expressing structure and 

emotion/mood can help composition, as well as composition providing more creative and controlled 

computer performance. The question is also open as to what forms of non-human expression can be 

developed and provide whole new vistas of the meaning of the phrase “expressive performance”, 

perhaps even for human players. 

One final observation regards the lack of neurological and physical models of performance 

simulation. The issue was not included as a part of our terms of reference, since it is hard to objectively 

quantify. But we would like to address this in closing. Neurological and physical modelling of 

performance should go beyond ANNs and instrument physical modelling. The human/instrument 

performance process is a complex dynamical system about which there has been some deeper 

psychological and physical study. However attempts to use these hypotheses to develop computer 

performance systems have been rare. More is being learned about the neural correlates of music and 
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emotion [Koelsch and Siebel 2005; Britton et al. 2006][Durrant et al 2007], and Eric Clarke [1993] has 

written on the importance of physical embeddedness of human performance. But although researchers 

such as Parncutt [1997] (in his virtual pianist approach) and Widmer [Widmer and Goebl 2004] have 

highlighted the opportunity for deeper models, there has been little published progress in this area of 

the CSEMP field.  

 So to conclude - the overarching focus so-far means that there are opportunities for some 

better tested, more creative, and neurological and physical models of human performance. These will 

be systems which not only help to win the Chopin contest, but also to utilise the innate efficiencies and 

power of computer music techniques. Music psychologists (and musicologists) will be provided with 

richer models; composers will be able to work more creatively in the micro-specification domain, and 

more easily and accurately generate expressive performances of their work. And the music industry 

will be able to expand the power of humanisation tools creating new efficiencies in recording and 

performance.  
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