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1. INTRODUCTION

In the early 1980s the seeds of a problem were sown as a resyititldizers being developed and
sold with built-in sequencers. The introduction of MIDI into thisiagtpn led to an explosion in the
use of sequencers and computers, thanks to the new potent@inioection and synchronisation
These computers and sequencers perfedntheir stored tunes in perfect metronomic time, a
performance which soued inhuman. They sounded inhuman because human performensliyor
perform expressively for examplespeeding up and slowing down while playing, and changing how
loudly they play.The performer’s changes in tempo and dynamics allow them to express a fixed score

— hence the term expressive performance [Widmer and Q@€4]. However rather than looking for
ways to give the music performances more human-like expregsipnperformers developed new
types of music, such as syntlp and dance music, that actually utilized this metronomic perfection to
generaté‘robotic’ performances.

Outside of pop, the uptake of sequencers for performance (asedppd®r composition) was
less enthusiastic, except for occasional novelties like Switched on Bach iy \WWaros, computer
performance of classical music was a rarity. Computer compositiclassical musitiad been around
since 1957 when The llliac Suite for String Quartet - the first publishe@asition by a computer -
was published by Lejaren Hiller [Hiller and Isaacson 1959]. Since tteza ttas been a large body of
such music and research published, with many successful systetsgd for automated and semi-
automated computer composition [Buxton 1977][Roads 1996][Mirandd]2@ut publications on
computer expressive performance of music lagged behind compdsjtimimost quarter of a century.
During the period when MIDI and computer use exploded amongstgxégrmers, and up to 1987 -
when Yamaha had released their first Disklavier MIDI piano - there were 2wy 3 researchers
publishing on algorithms for expressive performance of music [Tk885; Sundberg et al. 1983
However, from the end of the 1980s onwards there was an imgyéaterest in automated and semi-
automated Computer Systems for Expressive Music Performance (CSEMEMP is a computer

system able to generate expressive performances of music. For egaftwhre for music typesetting



will often be used to write a piece of music, but some packages playthmenusic in a relatively
robotic way— the addition of a CSEMP enables a more realistic playback. Or an MP3 plajeér co
include a CSEMP which would allow performances of music to be adjustdiffarent performance
styles.

In this paper we will review the majority of research on automated amdasgomated
CSEMPs. By automated, we refer to the ability of the systemce set-up or trained - to generate a
performance of a new piece, not seen before by the system, witrenwual interventin. Some
automated systems may require manual set-up, but then can be prestntadltiple pieces which
will be played autonomously. A semi-automated system is one wglires some manual input from

the user (for example a musicological analysis) to deal with a new piece

1.1 Human Expressive Performance

How do humans make their performances sound so different spiteled “perfect” performance a
computer would give In this paper the strategies and changes which are not marking ineabsitor
which performers apply to the music will be referred to as expreBsiMfermance Actionsfwo of the
most common performance actions are changing the Tempo and theeksuof the piece as it is
played These should not be confused with the tempo or loudnesgehanarked in the score, like
accelerando or mezzo-forte, but to additional tempo and loudness chahgeskex in the score. For
example, a common expressive performance strategy is for the parftonslow down as they
approach the endf ¢he piece [Friberg and Sundberg 199%other performance action is the use
expressive articulation- when a performer chooses to play notes in a more staccato (sbort an
pronounced) or legato (smooth) way. Those playing instrunweititscontinuous tuning, for example
string players, may also use expressive intonation, making notbatlyskharper or flatterand such
instruments also allow for expressive vibrato. Many instruments prabie ability to expressively
change timbre as well.

Why do humans add these expressive performance actions when playgicg Me will set
the context for answering this question using a historical perspectivéstRiad musicologist lan Pace
offers up the following as a familiar historical model for the developmiembtation (though suggests
that overall it constitutes an over-sinfgiatior) [Pace 200[

In the Middle Ages and to a lesser extent to the Renaissance, musical sewitksdponly a
bare outline of the music, with much to be filled in by the perforoneperformers, freely
improvising within conventions which were essentially communicated verbéthin a
region or locality. By the Baroque Era, composers began to be rpewifis in terms of
requirements for pitch, rhythm and articulation, though it was still comfor performers to
apply embellishments and diminutions to the notated scores, aingd the Classical Period a
greater range of specificity was introduced for dynamics and accentudliof this reflected
a gradual increase in the internationalism of music, with composers anded travelling
more widely and thus rendering the necessity for greater notatitamal as knowledge of
local performance conventions could no longer be taken for granted Beetmoven onwards,
the composer took on a new role, less a servant composing to occas®heltelt of his or
her feudal masters, more a freelance entrepreneur who followed hisesimasd wishes and
convictions, and wrote for posterity, hence bequeathing the nofitire master-work which
had a more palpable autonomous existence over and above its variofestatons in
performance. This required an even greater degree of notational exactitugbegrhple in the
realms of tempo, where generic Italianate conventions were both rendered in the composer’s
native language and finely nuanced by qualifying clauses and adjecthvesigh the course



of the nineteenth century, tempo modifications were also entered more flgduinscores,
and with the advent of a greater emphasis on timbre, scores gradwgpd more specific in
terms of the indication of instrumentation. Performers phased out rtheegses of
embellishment and ornamentation as the score came to attain more of thefstagacred
object. In the twentieth century, this process was extended nuuttterf with the finest
nuances of inflection, rubato, rhythmic modification coming to be indicaighe score. By
the time of the music of Brian Ferneyhough, to take the most extresnepkx all minutest
details of every parameter are etched into the score, and the performer’s task is simply to try
and execute these as precisely as he or she can.

So in pre20" century music there has been a tradition of performers making addiiora
performance which were not marked in the score (though the rdzeom calls this history an
oversimplification is that modern music ddewe the capacity for expressive performance, as we will
discuss later).

A number of studies have been dame this pre2d" Century (specifically Baroque, Classical and
Romantic) music performanc&he earliest studies began with Seashore [1938],gand overviews
include Palmer [1997] and Gabrielsson [2003]. One element of thefiesshas been to discover what
aspects of a piece of musicwhat Musical Featuresare related to a performer’s use of expressive
performance actions. One of #® musical features expressed is therformer’s structural
interpretation of the piece [Palmer 1997]. A piece of music has a nurhibevels of meaning- a
hierarchy. Notes make up motifs, motifs make up phrases, phrases pnsétions, sections make up
a piece (in more continuous instruments there are intranote elements as waéllgldfaent - note,
motif, etc - plays a role in other higher elements. Human perfornasies theen shown to express this
hierarchical structure in their performances. Performers have a tendestow tdown at boundaries in
the hierarchy- with the amount of slowing being correlated to the importance of thedaoy [Clarke
199§. Thus a performer would tend to slow more at a boundary betwetgmmsetan between phrases.
There are also regularities relating to other musical featurpsrformers’ expressive strategies. For
example in some cases the musical feature of higher pitched notes egosrformance action of the
notes being played more loudly; also note which introduce melodic terd&ive to the key may be
played more loudly. However for every rule there will always be exception

Another factor influencing expressive performance actisrBerformance ContexPerformes
may wish to express a certain mood or emotion (e.g. sadness, happimesgh a piece of music.
Performers have been shown to change the tempo and dynamipgoéavhen asked to express an
emotion as they play it [Gabrielsson and Jud®9q. For a discussion of other factors involved in

human expressive performance, we refer the reader to [JusBh 200

1.2 Computer Expressive Performance

Having examined human expressive performance, the question nowdwseeahy should we want

computers to perform music expressively? There are at least five answésgjteettion:

1. Investigating human expressive performance by developing computatmugls— Expressive
performance is a fertile area for investigating musicology and hunyghgiegy [Seashore 1938;
Palmer 1997 Gabrielsson 2003]JAs an alternative to experimentation with human performers,

models can be built which attempt to simulate elements of human exprpesformanceAs in



all mathematical and computational modelling, the model itself can give thectesegreater
insight into the mechanisms inherent in that which is being modelled.

2. Realistic playback on a music typesetting or composing-tobhere are many computer tools
available now for music typesetting and for composing. If these ptaysback the compositions
with expression on the computer, the composer will have a better ideawtfheh final piece will
sound like. For example, Sibelius, Notion and Fimaleesome ability for expressive playback.

3. Playing computer-generated music expressiveéihere are a number of algorithmic composition
systems that output music without expressive performance but wbitiences would normally
expect to hear played expressiveljieSe compositions in their raw form will play on a computer
in a robotic wayA CSEMP would allow the output of an algorithmic composition sydtebe
played directly on the computer which composed it (for example in a demgame which
generates mood music based on what is happening in the game).

4. Playing data files - a large number of non-expressive data files imafsrlike MIDI and
MusicXML [Hirata et al 200Bare available on the internet, and they are used by many musicians
as a standard communication tool for ideas and pieces. Without CSEMPsf riieesteofiles will
playback on a computer in an unattractive way, whereas the use of a G&&NMPmake such
files much more useful.

5. Computer accompaniment tasks - it can be costly for a musician tonpémsemble. Musicians
can practice by playing along to recordings with their solo parfpggiput. But some may find it
too restrictive since such recordings cannot dynamically follow the expeasss in the soloist
performance. These soloists may prefer to play along with amdtitesr accompaniment system
that not only tracks their expression but also generates its own expression.

2. A GENERIC FRAME FOR PREVIOUS RESEARCH IN COMPUTER EXPRESSIVE
PERFORMANCE

Figure 1 shows a generic model for the framework that most (bualhoprevious research into
automated and semi-automated CSEMPs tends to have folldledmodules of this diagram are
described beneath Figure 1.

Performance » Adaptation |
Examples Procedure [~
Music and e . Y
Analysis TN Performance | | Instrument R Sound
~| Knowledge g Model g >
Performance
Context

Figure 1: Generic model for most current CSEMPs



Performance Knowledge - This is the core of any performancensystels the set of rules or
associations that controls the performance action. It is the “expertise” of the system which contains the
ability, implicit or explicit, to generate an expressive performance. This breain the form of an
Artificial Neural Network, a set of cases in a Case-based Reasoningisgsta set of linear equation
with coefficients. To produce performance actions, this module itsgsrogrammed knowledge
together with any inputs concerning the particular performance. Itsimmihis the Music / Analysis
module.

Music / Analysis- The Music / Analysis module has two functions. First of all, in all systéras the
function of inputting the music to be played expressively (whethpaper score, MIDI, MusicXML,
audio or other form) into the system. The input process can becquiiglex, for example paper score
or audio input will require some form of analytical recognition of mussgehts. This module is the
only input to the Performance Knowledge module that @efthe particular piece of music to be
played. In some systems, it also has a second funetioprovide an analysis of the musical structure
This analysis provides information about the Music Features of the music example metrical,
melodic or harmonic structure. (It was mentioned earlier how it has dfeemn that such structures
have a large influence on expressive performance in humans.piidysis can then be used by the
Performance Knowledge system to decide how the piece should benestfgknalysis methods used
in some of the systems include Henl andJackendoff’s Generative Theory of Tonal Music [Lerdahl
ard Jackendoff 1983]Narmour’s Implication Realisation [Narmour 1990], and various bespoke
musical measurements. The analysis may be automated, manual oriatiomiof the two.
Performance Context - Another element which will effect how a pieceusiic is played is the
performance context. This includes such things as how the perfoeng&ted to play a piece for
example happy, perky, sad, or lovelorn. It can also include whétbgri¢ce is played in a particular
style, e.g. baroque or romantic.

Adaptation Procgs - The adaptation prose is the method used to develop the Performance
Knowledge. Like the Analysis module this can be automated, manualamnkdination of the two. In
some systems, a human expert listens to actual musical output of the padersystem and decides if
it is appropriate. If not then the Performance Knowledge can betedijigstry to improve the musical
output performance. This is the reason that in Figure 1 there is aolimg fyjom the Sound module
back to the Adaptation Procedure module. The Adaptation Procedure alsoutadromp Performance
Context, Music / Analysis, Instrument Model, and Performance Examples.oflihése elements can
influence the way that a human performs a piece of music, titbeginost commonly used is Musgic
Analysis and Performance Examples.

Performance Examples - One important eleimtvat can be incorporated in the Performance
Knowledge building is the experience of past human performances. Thegglexaan be used by the
Adaptation procedure to analyse when and how performance actions ardaddaéce of music by
human performers. The examples may be a database of marked-up aodiingsc MIDI files

together with their source scores (in the manual case) a person’s experience of music performance.



Instrument Model- By far the most common instrument used in computer generatémmance

research is the piano. This is because it allows experimetiismeny aspects of expression, but

requires only a very simple instrument model. In fact the instrumedéhused for piano is often just

the MIDI/media player and soundcard in a PC. Alternatively it may samgethore complex but still

not part of the simulation system, for example a Yamaha Disklavier. Howevew simulation

systens use non-keyboard instruments, for example Saxophark Trumpet. In these cases the issue

of aperformance is more than just expressiveness. Just simuldtingan-like performance, even if it

is non-expressive, on these instruments is non-trivial. So systemkatHy expressive performance

on such instruments may require a relatively complex instrumenelniodaddition to expressive

performance elements.

3. A SURVEY OF PREVIOUS RESEARCH IN COMPUTER EXPRESSIVE PERFORMANCE

The review presented here is meant to be representative rather than exhaustivé dmver the

majority of published automated and semi-automated CSEMP systems tbatd¢el lists the systems

reviewed, together ih information about their modules. This information will be explained @ th

detailed part of the review. A number of abbreviations are used in Tablethraoughout the paper.

Table Il lists these abbreviations and their meaning.

CSEMP Performance | Input Music Feature | Performance | Adaptation Performance | Instrumen | Performance
Knowledge Analysis Context Procedure Examples t Actions
Director Musices| Rules MIDI, Custom Mood space | - MIDI All (Piano) | T/D/IA/IP
Score Performances
Hierarchical Parabta MIDI, GTTM TSR - - - Piano T/D
Parabola Model | equation Score
Composer Pulse | Multiplier set | MIDI - - Manual Tapping All T/D
Bach Fugue Rules Score | Custom - Manual Books, Keyboard | T/A
Experts
Rubato Operators MIDI, Custom - Manual - All (Piano) | T/D
Score
Trumpet Linear model | Audio, | Custom - Manual Audio Trumpet A/P/O
Synthesis Score Performances
Linear Linear model | MIDI, GTTM / Meyer | - Regression Audio Piano T/DIA
Regression Score with ANDs Performances
ANN Piano ANN MIDI Custom - ANN training | MIDI Piano T/D
Performances
Music Plus One | BBN Audio Custom Soloist tempo | BBN training | Audio soloist| All T/D
/ performances
MIDI,
Score
SaxEx Fuzzy Rules | Audio, | Narmour / IR /| Mood space | CBR training | Audio Saxophone| T/D/VIK
Score | GTTM, Performances
Custom by mood
CARO Linear model | Audio Custom Mood space | PCA, Linear| Audio All T/K/D/A
Regression Performances

by mood




Emotional Flute | ANN and | Audio, | Custom Mood space | ANN training | Audio Flute T/DIV
rules Score Performances
by mood
Kagurame Rules MIDI, Custom Performance | CBR training | MIDI Piano T/DIA
Score conditions Performances
by context
Ha-Hi-Hun Rules MIDI, GTTM TSR Language CBR training | MIDI Piano T/D
Score Performance Performances
conditions by condition
PLCG Learned rules | MIDI, Custom - Meta- MIDI Piano T/DIA
Score Sequential Performances
Learning
Phrase- Learned rules | MIDI, Custom - CBR training, | MIDI Piano T/DIA
decomposition/ Score Harmonic by Meta- Performances
PLCG musicologist Sequential
Learning
DISTALL CBR MIDI, Custom - CBR training | MIDI Piano T/DIA
Score Harmonic by Performances
musicologist
Pop-E Ruled-based | MIDI, GTTM, - - MIDI Piano T/D
Score | Custom Performances
ESP Piano HMM MIDI, Custom - HMM MIDI Piano T/DIA
Score training Performances
Drumming Non-linear Audio Custom - KRR, GPR,| Audio Drums T
mapping kNN Performances
Non-linear Piano| Non-linear Worm, | Custom - KCCA Performance | Piano T/D
System mapping Score Worm
Genetic Regression Audio | IR, Custom - Genetic Audio Saxophone| T/D/AIN
Programming trees programming | performances
Sequential Rule-based Audio | IR, Custom - Sequential Audio Saxophone| T/D/A
Covering GAs covering by| performances
GA
Generative Pulse set MIDI, LBDM, - GA None Piano T/D
Performance Score Kruhmans,
GAs Melisma
MAS with | Pulse set MIDI, LBDM, - Imitation None Piano T/D
Imitation Score | Kruhmans,
Melisma
Ossia Fitness rules | MIDI - - - None Piano T/DIP
Music Linear model | MIDI, Custom Mood space | - Performances| Piano T/DIP/O
Emotionality Score and
Experiments
pMIMACS Rule-based MIDI Performance Excitability Imitation None Piano T/D
2) skill state

Table I. Systems reviewed




A Articulation

ANN Avrtificial Neural Network

BBN Bayesian Belief Network

CBR Case-based Reasoning

CSEMP Computer System for Expressive Music Performance
D Dynamics

DM Director Musices (KTH System)

EC Evolutionary Computing

GA Genetic Algorithm

GP Genetic Programming

GPR Gaussian Process Regression

GTTM Lerdahl and Jackendoff’s Generative Theory of Tonal Music
HMM Hidden Markov Model

IBL Instance-based Learning

IR Narmour’s Implication/Realisation Theory of Melody
K Attack

KCCA Kernel Canonical Correlation Analysis

kNN k-Nearest Neighbour

KRR Kernel Ridge Regression

LBDM Local Boundary Detection Model of Cambouropoulos
MAS Multi-agent System

MES Music Emotionality System by Livingstone et al
MIDI Musical Intrument Digital Interface

MIMACS Mimetics-inspired Multi-agent Composition System
MusicXML | Music Extended Markup Language

MIS Music Intepretation System by Katayose et al

N Note addition/consolidation

P Pitch

PCA Principal Component Analysis

T Tempo

TSR Time Span Reduction Technique (from GTTM)

\Y, Vibrato

Tablell. Abbreviations

Before discussing our primary terms of reference fiwr fview, we first need to observe that the
issue of evaluation of CSEMPs is an open problem. How does one evahmtésvessentially a
subjective process? If the CSEMP is trying to simulate a particulasrperhce, then correlation tests

can be done. But even if the correlations are low for a generated peréernitais logically possible



for the generated performance to be more preferable to some peoplédharginal performance.
[Papadopoulos and Wiggins 1999] discuss the evaluation issudifferent but closely related area -
computer algorithmic composition systems. THest four points that they see as problematic in

relation to such composition systems:

1. Thelack of evaluation by experts, for example professional musicians.

2. Evaluation is a relatively small part of the research with respect to the Ienti esearch
paoer.

3. Many systems only generate melodies. How do we evaluate the music withatnanic
context? Most melodies will sound acceptable in some context or other.

4. Most of the systems deal with computer composition as a probleimgabsk rather as a

creative and meaningful pross.

All of these four points are issues in the context of computer sydtamexpressive performance
as well. So from these observations we will extract three of our priteams of reference for this
review Performance Testing Status (points 1 and 2), Non-monophonic yAl§pivint 3) and
Performance Creativity (point 4). We will now examineseérst three dimensions.

Performance Testing Status refers to how and to what extent the dystebeen tested. It is
important to emphasise that Testing Status is not a measure of hessutthe testing was, but how
extensive it was. There are 3 main approatbedSSEMP testing: (a) trying to simulate a particular
human performance or an average of human performances, (g toycreate a performance which
does not sound machine-like, (c) trying to create as aesthetically pleapegormance as possible
For the first of these, a correlation can be done between the computemaerde and the desired
target performance/performances. (Howettgs will not be an “perceptually-weighted” correlation;
errors may have a greater aesthetic/perceptual effect at some pointsdtiearsaj For approaches (b)
and (c) we have listening tests by experts and non-experts. A widey\@rlistening tests are used in
CSEMPS, from the totally informal and hardly reported, to the reduitsroal competitions.

Each year since 2002 a formal competition, thatbeen described as a “musical Turing Test”,
called the RenCon (Contest for Performance Rendering SystemssMiprkhas been held [Hiraga et
al 2004]. About a third of the systems we will review have lexdared into a RenCon competition -
see Tablell for the results. RenCon &primarily piano-based competition for Baroque, Classical and
Romantic music, and includes manual as well as automated systems (theygécings in Tabldll
are displayed relative to automated and semi-automated CSEMPS, ignoring the mamissicos to
RenCon.) Performances are graded and voted on by a jury of atténoaedise sponsoring conference.
Scores are given for “humanness and“expressivenessgiving an overall “preference” score. It is the
preference score we will focus on in the review. The size of Ren@w@s,j and their criteria have
varied over time. In previous years (apart from its first year022®enCon did not have a separate
autonomous section it had two sections: Compulsory and Open, where compulsoryimiésd to a
fixed piano piece for all contestants, and open was open to all instisirand pieces. In these

competitions, automated CSEMPs went up against human pianists and renalitioln were carefully



crafted by human hand. Thus many past RenCon results are not the &eafiev for automated and
semi-automated CSEMPs. However they are the only published cofomon available, so in the

spirit of points (1) and (2) from Papadopoulos and Wiggirey thill be referred to where possible in

our review.
CSEMP RenCon Placings
Director Musices 2002 (4"), 2004 compulsory £}, 2005 compulsory (9
SuperConductor (include
Composer Pulse) 2004 open (%), 2006 open (land 4
Rubato 2004 open (@)
MIS 2002 (29
Music Plus One 2003 ()
Kagurame 2002 (6", 2004 compulsory (3, 2006 compulsory (9)
Ha-Hi-Hun 2002(5"), 2004 compulsory {3, 2006 compulsory (3
DISTALL 2002 (F)
Pop-E 2005 compulsory ), 2006 compulsory €, 2006 open (¥ and %)

Table Ill. RenCon placings of CSEMPS in this Paper

From 2008 onwards the competition has three sectionSaatonomous section, a “typedin”
section and the open section. The autonomous section aims tevailate performances rendered by
automated CSEMP#®erformances are graded by the composer of the test pieces as wedl psyby
For the autonomous section, the 2008 RenCon contestants are presentea witlkeiminute pieces of
unseen music: one in the style of Chopin and one in thedtiMezart. An award will be presented for
the highest scored performance and for the performance most préfetrecomposer of the two test
pieces. The type-in section is for computer systems for manuairating expressive performance.

The third term of reference in this revieRerformance Creativityrefers to the ability of the
system to generate novel and original performances, as opposgicutating previous human
strategies. For example the Artificial Neural Network Piano system [Bresiri@8@][Bresin 1998] is
designed to simulate human performances (an important research gdtaljotbio create novel
performances; whereas a system like Director Musices [Friberg et g, 20@6ugh also designed to
capture human performance strategies, has a parameterisation ability whiche cenreatively
manipulated to generate entirely novel performances. There is an impodgisbphere- a system
which is totally manual would seem at first glance to have a high cregtivigntial, since the user
could entirely shape every element of the performance. However this poteayialever be realised
due to the manual effort required to implement the performance. Negsaéims are able to act in a
novel and practically controllable way. Many of the systems generate el ofquerformance which is
basically a vector or matrix of coefficients. Changing this matrix by Il@naking it”) would allow
the technically knowledgeable to creatively generate novel performances. Hahedranges could
require too much effort, or the results of such changes could benpoedictable (thus requiring too
many iterations or “try outs”). So performance creativity includes the ability of a system to produce

novel performances with a reasonable amount of efftating said thatsimple controllability is not



the whole of Performance Creativity; for example there could be a CSENtP Wwas only 3 basic
performances rules which can be switched on and off with a mou&eadiit the new performance
played immediately. However the results of switching off and on tes mould in all likelihood
generate a very uninteresting performance.

So for performance creativity, a balance needs to exist between automation dive diesdbility,
since in this review we are only concerned with automated and seomated CSEMPs. An example
of such a balance would be an almost totally automated CSEMP, but widmageable number of
parameters that can be user-adjusted before activating the CSEMP fompader After activating
the CSEMP, a performance is autonomously generated but is only parti@lyateedby attemptng
to match past human performances. Such creative and novel perfoimaftea applauded in human
performers. For example Glenn Gould has created highly novel exgressformances of pieces of
music and has been described as having a vivid musical imagination [Ch@¢h E8pressive
computer performance provides possibilities for even more imagnaixperimentation with
performance strategies.

We will now add a fourth and final dimension to the primary teofneference which- like the
other three - also has parallels in algorithmic compositinfierent algorithmic composition systems
generate music with different levels of structural sophisticatifor example some may just work on
the noteto-note level, like [Kirke and Miranda 2008]. Whereas some may be able tatphe higher
structure level, generating forms like ABCBA, for example [Ander®70 There is an equivalent
function in computer systems for expressive performance: Expre§sveeption Expressive
Perception is the level abphistication in the CSEMP’s perception of the score. We have already
mentioned the importance of the music’s structure to a human expressive performance. A piece of
music can be analysed with greater and greater levels of complexity.skhfkest it can be viewed a
few notes at a time; or from the point of view of melody only. Atritsst complex the harmonic and
hierarchical structure of the score can be analyseslis done itWidmer’s DISTALL system [Widmer
and Tobudic 2003a; 2003b]. The greater the expressive perceptd@IEMP, the more of the music
features it can potentially express.

So to summarise, our 4 primary terms of reference will be:

e Testing Status
o Expressive Perception
e Non-monophonic Ability

e Performance Creativity

At some point in our description of each system, these pointsenithplicitly or explicitly addressed,
and are summarised at the end of the paper (see Table i¥ worth noting that these are not an
attempt measure of how successful the system is overall, but an attemgglight some key issues
which will help to show potential directions for future research.

What now follows is the actual descriptions of the CSEMPs, divided intardoatuof groups.

Each CSEMP igrouped according to how their performance model is bduik. by learning method.



This provides a manageable division of the field, shows which learngtigoats are most popular, and
shows where there is room for development in the building of peafoce models. The grouping will
be:

Non-learning (10 systems)

Rule/Case-based learning (6 systems)

Linear regression (2 systems)

Non-linear regression (2 systems)

Artificial Neural Networks (2 systems)

Statistical Graphical Models (2 systems)

N o o A~ w NP

Evolutionary computation (6 systems)

3.1 Non-learning Systems

3.1.1 Director Musices. Director Musices (DM) [Sundberg et al. 1B8Berget al. 2006] has been an
ongoing project since 1982. Researchers including violinist LarsehRrydeveloped and tested
performance rules using an analyBissynthesis method (later using analysysmeasurement and
studying actual performances). Currently there are around 30 rhies are written as relatively
simple equations that take as input Music Features such as heightofréh& note pitch, the pitch of
the current note relative to the key of the piece, or whether the toaotenis the first or last note of the
phrase. The output of the equations defines the Performance Actiorexaraple the higher the pitch
the louder the note is played, or during an upward run of notesth@ayece faster. Another DM rule
is the Phrase Arclwhich defines a “rainbow” shape of tempo and dynamics over a phrase .The
performance speeds up and gets louder towards the centre of a phrswnaads off again in tepo
and dynamics towards the end of the phrase. Some manual score anabgisrésl— for example
harmonic analysis and marking up of phrase start and Bii's ability for expressive perception is at
the note and phrase levelit does not use information at higher levels of the musical structure
hierarchy.

Each equation has a numeric “k-value” - the higher the k-value the more effect the rule will
have and a k-value of 0 switches the rule off. The results of tlaieqs are added together linearly to
get the final performance. Thanks to the adjustable k-value systemhd@Mmuch potential for
performance creativity. Little work has been reported on an activehséar novel performances,
though it is reported that negative k-values reverse rule effects and cass@lyperformance®M’s
ability as a semirutomated system comes from the fact it has a “default” set of k-values, allowing the
same rule settings to be applied automatically to different pieces of nhaiglt not necessarily with
the same success).

Rules are also included for dealimgth non-monophonic music [Friberg et al. 2006]. To
understand more deeply the issues raised by polyphonic expressigider that each voice of an
ensemble has its own melodic structure. Many monophonic methodsbddsicr our survey would
lead to a number of voices each being given their own expressive tdeirigtions, causingle

synchronization and cacophony. In DM, thdelodic-sync” rule generates a new voice consisting of



all timings in all other voices (if two voices have simultaneous notes, ttie note with the greatest
melodic tension is selected.) Then all rules are applied to this synchronisaii@n and resulting
durations are mapped back onto the original voices. The “Bar-sync” rule can also be applied to make

all voices re-synchronise at each bar end.

DM is also able to deal with some Performance Contexts, specifically ealotipression
[Bresin and Friberg 2000], drawing on work by Gabrielsson anihJi996]. Listening experiments
were used to define the k-value settings on the DM rules for expyessiotions. The music used was
a Swedish nursery rhyme and a computer-generatedipieesinor mode written using Cope’s [1992]
algorithmic composition system in the musical style of Chopin. Sixsrulere used from DM to
generate multiple performances of each piece. Subjects were asked to idpetiiyranance emotion
from the list: fear, anger, happiness, sadness, solemnity, tendemessexpression. As a result
parameters were found for each of the 6 rules which mould the emaipraission of a piece. For
example for “tenderness”: inter-onset interval is lengthened by 30%, sound level reduced by 6dB, and
two other rules are used: the Final Ritardando rule (slowing down antheof a piece) and the

Duration Contrast rule (if two adjacent notes have contrasting durations, int¢risasmntrast).

Director Mustes has a good test status, having been evaluated in a number of expeiime
[Friberg 1995] k-values were adjusted by a search algorittased on 28 human performances of 9
bars ofof Schumann’s Trdumerei. A good correlation was found between the human performances and
the resulting DM performance. Another experiment involved manuattingf to one human
performance the first 20 bars of the Adagio in Mozarts sonata K.SB8&dberg et al 2003]The
correlations were found to be low, unless the k-values were allowed rigeckdgnamically when the
piece was performed. An attempt was made to fit k-values using toea @gpus of piano music
using Genetic algorithms [Kroiss 2000], and the results were found to give a low correlatiovelhs
In an attempt to overcome this [Zanon and De Poli 2003] allowed lesaduvary in a controlled way
over a piece of music. This was tested on Beethev@onatine in G Major and Moz&tK.332 piano
sonata (the slow movement)but the results were found to be poor for the Beethoven. Inirtie f
RenCon in 2002, the second prize went to a DM rendering, howbeefirst placed system (a
manually rendered performance) was voted for by 80% of the joryRehCon 2005, a Director
Musices default-settings (i.e. automatgeerformance ofMozart’s Minuette KV 1(1e) came a very
close 2% in the competition, behind Pop-E (Section 3.1.7). However 3 of ther athsystems
competing were versions of the DM-system.

So the results have been mixed, perhaps bed3sks a “building-block™ approach to music
performance, developed more out of a desire to learn about the buildakg bf music performance,
rather than finding an efficient way of putting them togethéie DM model has been influential, and

as will be seen in the later systems, DM-type rules appear again and again.

3.1.2 Hierarchical Parabola Mod€lne of the first CSEMPs with a hierarchical expressive perception
was Todd’s Hierarchical Parabola ModdlTodd 1985 Todd 1989 Todd 1992 Todd 1995]. Todd
argues it was consistent widhkinematic model of expressive performance, where tempo charges ar

viewed as being due to accelerations and decelerations in some internais proake human



mind/body, for example the auditory systdfor tempo the hierarchical parabola model uses a rainbow
shapelike DM’s phrase arch, which is consistent with Newtonian kinematics. For loudness thelmod
uses d‘the faster the louder” rule, creating a dynamics rainbow as well.

The key difference between DM andsthierarchical model is that the hierarchical model has
greater expressive percepti@md wider performance actiorMultiple levels of the hierachy are
analysed using.erdahl and Jackendoff’s Generative Theory of Tonal Music (GTTM). GTTM Time
Span Reduction (TSR) examines each Tsotewusicological place in all hierarchical levelhe
rainbows/parabolas are generated at each level, from the note-group pdesetisi (Figure 2) and
added to get the performancEhis generation is done by a parametrized parabolic equation which
takes as input the result of the GTTM TSR analysis.

Tempo Parabolas

N —— N
(NN NN AN

Note Groupings

Figure 2: Todd Parabola Model

The performance was shown to correlate well by eye with a short hpenformance but no
correlation figures were reported. [Clarked Windsor 2000] tested the first four bars of Mozart’s
K.331; comparing two human performers with two performancethéyHierarchical Parabola model.
Human listeners found the Parabola version unsatisfactory compared tantha bnes. In the same
experiment however, the Parabola model was found to work well ahearshort melody. The testing
also showed that the idea of “the louder the faster” did not always hold. [Desain and Honing 1993]
claim through informal listening tests that in general the perfoce®do not sound convincing.

Like DM, the Hierarchical Parabola Model is not purely designed to prodlesesgmt
performanceslt attempts to investigate a fundamental part of the expressive pert@maierarchy
expression. The constraint of utilising the hierarchy and the GTTM TSRoagp limits the
Performance Creatiwit Note groupings will be limited to those generated by a GTTM TSR analysis,
and the parabolas generated1viié constrained by the model’s equation. Any adjustments to a

performance will be constragd to working within this framework.

3.1.3 Composer Pulse and Predictive Amplitude Shaping. Manfrete€Iigomposer Pulse [Clynes
1984 also acts on multiple levels of the hierarchy. Clynes hypothesises eagos®r has a unique
pattern of amplitude and tempo variations running through perfasara pulse. This is captured as

a set of numbers multiplying tempo and dynamics values in the.dtas hierarchical with separate



values for within the beat, the phrase and at multiple bar level. Tlatdbdws the values of pulses for
phrase level for some composers. The pulses were measured usinggeaplntio generate pressure
curves from musicians tapping their finger whilst thinking of detigng to a specific composer. Figure
3 shows the structure of a pulse set in three-time (each compssarthree-time and a four-time pulse
set defined). This pulse set is repeatedly applied to a score end.dboeifithe pulse is 12 beats long

and the score is 528 beats, the pulse will repeat 528/12 = 44 times erdi on en

Level 2 Composers’ Pulses - 4 Pulse

Duration 106 89 96 111
Beethoven )

Amplitude | 1.00 0.39 0.83 0.81

Duration 105 95 105 95
Mozart .

Amplitude 1.00 0.21 0.53 0.23

Duration 97 114 98 90
Schubert )

Amplitude | 1.00 0.65 0.40 0.75

Duration 108 94 97 102
Haydn ]

Amplitude 1.00 0.42 0.68 1.02

Duration 96 116 86 102
Schumann )

Amplitude | 0.60 0.95 0.50 1.17

Duration 118 81 95 104
M endelssohn )

Amplitude | 1.00 0.63 0.79 1.12

Tablelll. Level 2 Composers’ Pulses

Figure 3. Structure of a pulse set in three-time

Another key element of Clyne’s approach is Predictive Amplitude Shaping. This adjusts a
note’s dynamic based on the next note simulating “a musician's unconscious ability to sculpt notes in
this way” that “makes his performance flow beautifully through time, and gives it meaningful
coherence even as the shape and duration of eashdind note is unique.” A fixed envelope shape

model is usedsome constants are manually defined by the)usiee main inputs being distance to the



next note and duration of the current note. So the Pulse/Amplitude systenonly note level

expressive perception.

Clynes’ test of his own model [Clynes 1995] showed that a number of expert amexpert
listeners preferred music with a composers pulse than with a differset plowever not all tests on
Clynes’ approach have supported a universal pulse for each composer [Thompson 1989; Repp 1990]
suggest instead that the pulse may be effective for a safbsebmposer’s work. Clynes’ pulses and
amplitude shaping have been combined with other performance taplwvifeato generation) as part
of his commercial software SuperConductor. Two SuperConductor ajedeperformances were
submitted to RenCon 2006 open section: Beetheveroica Symphony, Op.55, Mvt.4 and Bralims
Violin Concerto, Op.77, Mvt.1. The Beethoven piece scored low, but thien®r piece came™in the
open section (beating two pieces submitted by Pop-E - Sectiof).3The generation of th piece
could have involved significant amounts of manual work were requided. because it was the open
section, the pieces submitted by FBprere not the same as submitted by SuperCondudtence like
was not compared to like. SuperConductor also won the open seckem@on 2004 with J. S. Bach,
Brandenburg Concerto No.5, D Major, 3rd Moveméifite only competitor included from this review
wasRubato (Section 3.1.6) performing a Bach piece. It should bepbasised that these results were

for SuperConductor and not solely for the Pulse and Amplitude tools.

In the context of SuperConductor, Clynes approach allows forfisemi Performane
Creativity. The software is designed to allow a user to control the exmgresisaping of a MIDI
performance, giving significant amounts of control. However, idatsof the context of
SuperConductor, the pulse has little scope for performance creatitigugh the amplitude shaping
does. The pulse and amplitude shaping do not explicitly address nmmphamic music, though

SuperConductor can be used to generate polyphonic performances.

3.1.4 Bach Fugue Systenm the Bach Fugue System [Johnson 1991] Expert System metleodsear
to generate performance actions. Johnson generated the kneWwsdgthrough interviews with two
musical expert performers, and through a performance practice maduah @nnotated edition of the
Well-Tempered Clavier; so this system is not designed for peafuzen creativity. Twenty eight
conditions for tempo and articulation are so-generated for the knowledgd-bassample: “If there

is any group of 18 notes following a tied note, then slur the group df b6tes following the long
note.” Expressive perception is focused on the note to phrase level. TheFC&&ed not perform itself,
but generates instructions for 4/4 fugues. So testing was limitechinirg the instructions. It gave
the same instructions as human experts 85 to 90% of the time, thdagiot said how many tests

were run. The system is working in the context of polyphony

3.1.5 Trumpet Synthesis. Three out of the last four CSEMPs revieswetfocused on keyboard, and
this pattern will continue through the paper - most CSEMPs focus grighe because it is easier to
collect and analyze data for the piano than for other instrum®nes of the first non-piano systems
was Dannenberg and Derenyi’s Trumpet Synthesis [Dannenberg and Derenyi 1998; Dannenberg et al.

1998]. The authors’ primary interest here was to generate realistic trumpet synthesis, and adding



performance factors improves this synthesis. It is not dedidar performance creativity but for
simulation. This trumpet system synthesizes the whole trumpet perfcemaithout needing any
MIDI or audio building blocks as the basis of its audio output. Theopesance actions are amplitude
and frequency, and these are controlled by envelope models wkiehdeveloped using a semi-
manual statistical analysis+synthesis method. A 10-parameter model was built for amplitude, based
on elements such as articulation, direction and magnitude of pitchatgeand duration of notes. iEh
system works by expressively transforming one note at a time, basbé pattern of the surrounding
two notesIn terms of expressive perception the system works on a 3 note Witkpitch expression

is based on envelopes which were derived and stored during the abstggisthesis.

No test results are reported. Dannenberg and Derenyi placed two accompanieteexamp
online: parts of a Haydn Trumpet Concerto afich Handel Minuet. The start of the trumpet on the
Concerto without accompaniment is also online, together with a hptagimg the same phrase. The
non-accompanied synthesis sounds quite impressive, only beingaetioa synthetic feel towards
the end of the phrasethough the notée-note expression (as opposed to the synthesis) consistently
avoids sounding machine-like. In both accompanied examples itnbeckear as the performances
went on that a machine was playing, particularly in faster passages. 8atagain notée-note
expression did not sound too mechanical. Despite the reasquaitiye nature of these examples,

there is no attempt to objectlyequalify how good the trumpet system is.

3.1.6 RubatoMazzola, a mathematician and recognised Jazz pianist, developed a mathematical theory
of music [Mazzola 1994][Mazzola 2002]. Music is represented in an abgtametrical space whose
co-ordinates include onset time, pitch, and duration. A score will exigtis space, and expressive
performances are generated by performing transformations orspghee. The basis of these
transformations are a series‘@perators which can be viewed as a very generalised version of the
rule-based approach taken in Director Musices. For example, the Teegaiar and the Split operator
allow the generation of tempo hierarchiébese give Rubato a good expressive perception. However
the definition of the hierarchy here differs somewhat from that fdanthe Hierachical Parabola
Model or DISTALL (Section 3.2.6). A tempo hierarchy, for a piano grerdnce, may mean that the
tempo of the left hand is the dominant tempo, at the top of a hieramtythe right hand tempo is
always relative to the left hand temp@nd so is viewed as being lower in the hierarchy. Mazzola also
discusses the use of tempo hierarchies to generate tempo for grace netgreggibs- the tempo of
these is relative to some global tempo higher in the hieraideyas from this theory have been
implemented in a piece of software called Rubato, which is available ofilime expressive
performance module in Rubato is tHeerformance RubetteA MIDI file can be loaded in Rubato and
pre-defined operators used to generate expressive performances. Theamsatso manually

manipulate tempo curves using a mouse and GUI, giving Rubatbsgope for performance creativity.

Test reports are limited. In RenCon 2004, a performanc®aoh’s Contrapunctus III
modelled using Rubato was submitted, and cathi 4he open section (SuperConductor cafiénl
the section with a different piece). It is not clear how automated the genestlee performance was.

Listening to the submission it can be heard that although the indiwidices are quite expressive and



pleasant (except for the fastest parts), the combination sounds relativedyistit. An online MIDI
example is available of Schumann’s Kindersezenen op. 15 Nr. 2, "Kuriose Geschichte" which
evidences both tempo and dynamics expression and is quite impréksivgh once again it is not

clear how automated the production of the music was.

3.1.7 PopE. Pop-E [Hashida et al. 2006], a Polyphrase Ensemble system, was demlogmde of
the team involved in MIS (Section 3.3.1). It applies expression featuressdypdo each voice in a
MIDI file, through a synchronisation algorithm. The music analysess GTTM local level rules, and
utilizes beams and slurs in the score to generate note groupmbe.expressive perception is to up to
phrase level. Expressive actions are applied to these groupings through mitescemt of Director
Musices. The 5 performance rules have a total of 9 manual parametezerbétem. These parameters
can be adjusted, providing scope for performance creativity. ticyar jPop-E [Hashida et al 2007],
a java implementation of the system provides such tools for shapinger@rmances.

To deal with polyphony, Synchronisation Points are defined atdteegrouping start and end
points in the attentive part. The attentive part is that voice which is recstpgually prominent to a
listener. The positions of notes in all other non-attentive parts are linegmipatated relative to the
synchronisation points (defined manually). This means that all pdrtstart and end at the same time
at the start and end of groupings of the main attentive part.

PopE was evaluated in the laboratory to see how well it could reconstructisgaaihan
performances. After setting parameters manually, performancdwdsy pianists were reconstructed.
The average correlation values between Pop-E and a performer were 0tBghfo and 0.76 for
dynamics. This has to be viewed in the context that the average correlatigree the human
performers were 0.4 and 0.55 respectively. Also the upper piano garhare accurate on average. (It
is interesting to note that for piano pieces whose attentive part is the rigiht tnen PopE
synchronisation system is similar to the methods in the DISTAktesy for dealing witipolyphony—
see Section 3.26Pop-E won the RenCon 2005 compulsory section, beating Dirbtisices.In
RenCon 2006 Pop-E won the compulsory section beating Kaguggettion 3.2.2) and Hd-Hun
(Section 3.2.3). In the open sectioriB06 SuperConductor beat Pop-E with one performance, and lost

to Pop-E with another.

3.1.8Hermode Tuning. In the next two sub-sections we will describe commESEPs. Despite the
lack of details available on these proprietary systems we felt they sheuitluded here since they
are practical CSEMPs that people are paying money for, and illustrate dothe ocommercial
potential of CSEMPs for the music business. However because of the Isaefdetails we will not
attempt to apply the four review terms of reference. The firdesyss Hermode Tuning [Sethares
2004]. Most systems in this review focus on dynamics anthginHowever intonation is another
significant area of expression for many instrumenfer example many string instrumen{in fact,
three intonation rules were added to Director Musices in its later incarndtorsample, the higher
the pitch, the sharper the note.) Hermode Tunirsgdisdicated expressive intonation system which can

work in real time, its purpose being to “imitate the living intonation of well educated instrumentalists in



orchesras and chamber music ensembles.” Instrumentalists do not perform in perfect intonation — in
fact if an orchestra performed music in perfect tuning all the time thredseould be less pleasant than
one that optimised its tuning through performance experience. A seri@gasithms are using in
Hermode tuning not just to avoid perfect intonation but to attempt ieweclptimal intonation. The
algorithms have settings for different types of music, for example Barawa Jazz/Pop. Examples are
available on the website, and the system has been successful enoagéntbdulded in a number of
commercial products for example Apple Logic Pro 7.

3.1.9 Sibelius. As mentioned in the introduction of this paper, thecnypesetting software package
Sibelius has built-in algorithms for expressive performance. Tieesa rule-based approach. Precise
details are not available for these commercial algorithms but some information isle\&iab 2007].
For dynamics, beat groups such as barlines, sub-bar groups arsldreamed to add varying degrees
of stress. Also the higher the note is the louder it is played, thalgme resets at rests and dynamic
expression is constrained to not be excessive. Some random fluctuatioadd¢@dginamics to make it
more human-sounding as well. Tempo expression is achievedausingple rubato system; however
this rubato does not include reliable phrase analysis. The manufacturer reports that “phrasing need only

be appropriate perhaps 70% of the tinthe ear overlookshe rest” and that “the ear is largely fooled

into thinking it’s a human performance.” Notion and Finale also have expressive performance systems
built into them, which are reportedly more advanced than Sibghuseven fewer details are available

for the proprietary methodologies in these systems.

3.1.10 Music Emotionality System. In relation to the philosophy behind the MHEsotionality
System (MES) [Livingstone et al 2007], Livingstone obsetleas the separation of musical rules into
structural and performative is largely an ontological one, and cedes ndthititge final audio
experienced by the listener.” The Music Emotionality System has a rule-set of 19 rules developed
through analyis-by-synthesis. The rules have an expressive perception up to the phrasedemel,
requiring manual mark-up of the score. These rules are designed notooimject microfeature
deviations into the score to generate human-like performances, but alse tmicrofeature and
macrofeature deviations to express emotions to the listener. To thigllE®ds able to change the
score itself, recomposing it.

MES has a 2-D model of human emotion space with four quadraintg ffom very active
and negative to very active and positive, to very passive and posituegthto very passive and
negative. These four elements combine to give such emotions as angtt, contented and
despairing. The quadrants were constructed from a review of 20 stidiessic and emotion. The
rules for expressing emotions include: moving between major amor nmodes, changing note pitch
classes, as well a@3M-type rules for small changes in dynamics and tempo. It was found that the
addition of the microfeature humanisation rules improved the accufdleg emotional expression (as
opposed to solelyusing macrofeature “recomposition” rules). The rules for humanising the
performance include some rules which are similar to Director Mussted) as Phrase Arch and

emphasising metrically important beaCreative Performance is possible in MES by adjusting the



parameters of the rule set, and the emotional specification would allow a useecify different
emotions for different parts of a performance.

A significant number of formal listening testavebeen done by Livingstone and they support
the hypothesis that MES is more successful than DM at expressing esnMigs is one of the better
tested systems in this reviewone reason being that its aim is more measurable than a purely aesthetic

goal.Examples of MES are available on the author’s webpage.

3.2 Case and Instance-based Systems

Case-based Reasoning is the first learning method we will addressinge@SEMPS can incorporate
more knowledge more quickly that non-learning systems. However mgthods do not always
provide tools for creative performance because they are strorabdrin past performances. Before
continuing we should explain that any CSEMP that learns expressive deviatioesméese a non-
expressive reference point, some sort of representation of the music plagédatty/neutrally. The

CSEMP can then compare this to the score played expressively by a lamehéearn the deviations.

3.2.1 SaxExArcos and Lopez de Mantaras’ SaxEx [Arcos et al. 1997; Arcos et al. 1998; Arcos and
Mantaras 2001a; Arcos and Mantaras 2001b; Mantaras and Arcos 2002]enafstom first systems to
learn performances based on the performance context of mood. Likeutget system described
earlier (Section 3.1.5paxEx includes algorithms for extracting notes from audio files, andrgting
expressive audio files from note data. SaxEx also looks at intranote featereiblikto and attack.
Unlike the trumpet system, SaxEx needs a non-expressive audio fildampaansformations upon.
Narmour’s IR theory is used to analyse the music. IR considers features of the préwioumtes in
the melody, and postulates that a human will expect the melody to move itaia d@ection and
distance; thus it can classify each note as being part of a certain expedtatnes Other elements
used to analyse the music are ideas from Jazz theory, as well as GSRMHIs systerfs expressive
perception is up to phrase level and is automated.

SaxEx was trained on cases from monophonic recordings of a saroplaying 4 Jazz
standards with different moods (as well as a non-expressive penfogjnd he moods are designed
around three dimensions: tender-aggressive, sad-joyful, and calnssedtlee mood and local IR,
GTTM and Jazz structures around a note are linked to the expressive deviatienpenformance of
that note. These links are stored as performance cases. SaxEx cangheamla non-expressive audio
file and told to play it with a certain mood. A further Al method is ubed to combine cases: Fuzzy
Logic. For example - if two cases are returned for a particular note iedhe and one says play with
low vibrato, and the other says play with medium vibrato, then fuziig mmbines them into a low-
medium vibrato. The learning of new CBR solutions can be done aitatyabr manually through a
GUI, which affords some performance creativity giving the usdroager input to the generation of
performances. Hough this is limited by SaxEx’s focus on being a simulation system. There is, like the
Music Emotionality System, the potential for the user to generate a parfoenvith certain moods at

different points in the music



There is no formal testing reported, but SaxEx examples are available onleeuifiors
report“dozens” of positive comments about the realism of the music from informal listeastg, but
no formal testing is reported or details given. The short examples online (Sad and Joyful) sound
realistic to us, more so than - for example - the trumpet systampdgs. But the accuracy of the

emotional expressiowas difficult for us to gauge.

3.2.2 Kagurame. Kagurame [Suzuki et al. 1999; Suzuki 2003] is emcadle-based reasoning system
which — in theory - also allows expressiveness to be generated from mo@dsinth for piano
However it is designed to incorporate a wider degree of perforntamcitions than solely mood, for
example playing ira Baroque or Romantic style. Rather than GTTM and IR, Kagurame usesrits
custom hierarchical note structures to develop and retrieve cases for expressinaapedo This
hierarchical approach giveodexpressive perceptiofcore analysis automatically divides the score
into segments recursively with the restriction that the divided segmast be shorter than one
measure. Hence manual input is required for boundary informatiosefgments longer than en
measure. The score patterns are derived automatically after this, as is the lefaerjmmgssive actions
associated with each pattern. Kagurame acts on timing, articulation, anhickyndhere is also a
polyphony action called Chord Time Lagotes in the same chord can be played at slightly different
times. It is very much a simulation system with little scope for creativenpeafice.

Results are reported for monophonic Classical and Romantic styles.wegstshased on
learning 20 short Czerny etudes played in each style. Then a 21styaiegerformed by Kagurame.
Listeners said it “sounded almost human like, and expression was acceptable” and that the “generated
performance tended to be similar to human, particularly at characteristic points.” A high percentage of
listeners guessed correctly whether the computer piece was Romantic or Clagsicdh $2enCon
2004 Kagurame came 4th in one half of the compulsory sectiomhwaal of Director Musices, but
was beaten by DM in the second half, comify A&t RenCon 2006 a polyphonic performance of

Chopin's piano Etude in E major canfé @vith Pop-E taking T place).

3.2.3 HaHi-Hun. Ha-Hi-Hun [Hirata and Hiraga 2002] utilizes data structures designed to allow
natural language statements to shape performance conditions (these inclstieictat@s to deal with
non-smonophonic music). The paper focuses on instructions of the form “render performance of piece X

in the style of an expressive performance of piece Y”. As a result, there are significant opportunities for
performance creativity through rendering a piece in the style of ya different second piece; or
perhaps performing the second piece bearing in mind that it will bd ts generate creative
performances of the first piece. The music analysis oHHBElUN uses GTTM TSR to highlight the
main notes that shape the melody. TSR giveHHEUn an expressive perception above note level.
The deviations of the main notes in the piece Y relative to the score of Y are cal@nateadn then

be applied to the main notes in the piece X to be performed bMiHtm. After this the new
deviations in X’s main notes are propagated linearly to surrounding notes like “expressive ripples”
moving outwards. The ability of HAi-Hun to automatically generate expressive performances comes

from its ability to generate a new performance X based on a previoperformance Y.



In terms of testing, two pieces were rendered, each in the style thieamiece and formal
listening results were reported as positive, but few experimental details arelgiRsmCon 2002 Ha-
Hi-Hun learned to play Chopin Etude Op.10, No. 3 through learningyieecd a human performance
of Chopin’s Nocturne Op. 32, No. 2. The performance came 9" out of 10 submitted performances by
other CSEMPs (many of which were manually produced). In Rer2064, HaHi-Hun came last in
the compulsory section, beaten by both Director Musices and Kagurame (Se2t@n In RenCon
2006, a performance by Héi-Hun also came third out of six in the compulsory section, beaten b

Pop-E (Section 3.1.7) and Kagurame.

3.24 PLCG System. Gerhard Widmer has applied various versions of a rulelbasedg approach
attempting to utilise a larger database of music than previous CSHW@SPLCG system [Widmer
2000; Widmer 2002; Widmer 2003] uses data mining to find largebeus of possible performance
rules and cluster each set of similar rules into an average rule. This i@ $ys musicology and
simulation rather than one for creative performafieCG is Widmer’s own meta-learning algorithm
— the underlying algorithm being Sequential Covering [Mitchell 1997]. PLQ@s ra series of
sequential covering algorithms in parallel on the same monophonic musicaladdtgathers the
resulting rules into clusters, generating a single rule from each cluster. Thsetdates thirteen Mozart
Piano sonatas performed by Roland Batik in MIDI form (only melodies wsed u giving 41,116
notes). A note-level structure analysis learns to generate tempo, dynanchiagtiaulation deviations
based on the local contexte.g. size and direction of intervals, durations of surrounding notds, an
scale degree. So this CSEMP has a note level expressive perception. Asd tesL.CG algorithm
383 performance rules were turned into just 18 rules. Interestisgiye of the generated rules had
similarities to some of the Director Musices rule set.

Detailed testing has been done on the PLCG, including#seralisation aklity (the ability
for the system to perform musior composers that weren’t explicitly included in its learning).
Widmer’s systems are the only CSEMPs reviewed here that have had any significant generalisation
testing. The testing methods were based on correlation approaches. Seven piecésaafing scores
were regenerated using the rule set, and their tempo/dynamics profiles edrtgpahe original
performances very favourably. Regenerations were compared tonpenfees by a different human
performer Phillipe Entremont and showed no degradation relative toi¢fieabperformer comparison.
The rules were also applied to some music in a romantic style (two Chepés), giving encouraging

results. There are no reports of formal listening tests.

3.25 Combined Phrase-decomposition/PLCIhe above approach was extended by Widmer and
Tobudic into a monophonic system whose expressive perception extentiggher levels of the score
hierarchy. Tis was the combined Phrase-decomposition/PLCG system [Widmer andid @003]
(Once again this is a simulation system rather than one for creatiegrpance.) When learning, this
CSEMP takes as input scores that have had their hierarchical phrase structure ddfieedi¢vels by

a musicologist (who also provides some harmonic analysis), togetherawitbxpressive MIDI

performance by a professional pianist. Tempo and Dynamics curves arkatedldoom the MIDI



performance, and then the system does a multi-level decompositioesef expression curves. This is
done by fitting quadratic polynomials to the tempo and dynamiogesulike the curves in Todd’s
Parabola Model in Section 3.1.2).

Once the lowest level fitting has been done, there is stilleaidual expression. This is
hypothesised as being due to note-level expression, and the PL&@thalgs run on the residuals to
learn the note-level rules which generate this residual expression. The ledthiagon-PLCG tempo
and dynamics is done using a case-based learning type method méyypang from multiple-level
features to the parabola/quadratic curves. An extensive set of music featuresdairecluding: length
of the note group, melodic intervals between start and end notes, where ttepeitaf the note group
is, whether the note group ends with a cadence, and the progressiammoiny between start, apex
and endThis CSEMP has the most sophisticated expressive perception of alstemsydescribed in

our review.

To generate an expressive performance of a new score, the systems timough the score
and in each part runs through all its stored features vectors learneth&draining; it finds the closest
one the using a simple distance measure. It then applies the curveistthiedcase to the current
section of the score. Data for curves at different levels, and results di@t& Rre added together to

give the expression performance actions.

A battery of correlation tests were perform&ixteen Mozart sonatas were used to test the
system- training on 15 of them and then testing against the remagmiagThis process was repeated
independently selecting a new 1 of the 16 and then re-training orthdne1®. This gave a set of 16
results which the authors described as “mixed”. Dynamics generated by the system correlated better
with the human performance than a non-expressive performanae (straight line) did in 11 out of
16, this was only case for 6 out of 16 for the timing curves. Taerao reports of formal listening

tests.

3.2.6 DISTALL system. Widmer and Tobudic did further work tgiave the results of the Combined
Phrase-decomposition/PLCG, developing the DISTALL system [Widmer abddic 2003a; 2003b]
for simulation. The learned performance cases in the DISTALL systenieaaechically linked, in the
same way as the note groupings they represent. So wherstbmsy learning sets of expressive cases,
it links together the feature sets for a level 3 grouping with all the Zeaed level 1 note groupings it
contains. When a new piece is presented for performance, and the isylsigking at a particular level
3 grouping of the new piece, say-Xand X contains a number of level 2 and level 1 subgroupings -
then not only are the score features of X compared to all level 3 casks memory, but the
subgroupings of X are compared to the subgroupings of the cedhlewel 3 cases as well. There have
been measures available which can do such a comparison in case-bassgl hedone DISTALL (e.g.
RIBL [Emde and Wettschereck 1996]). However DISTALL does it in a wayenappropriate to
expressive performaneegiving a more equal weighting to subgroupings within a gray@nd giving
this system a high expressive perception.

Once again correlation testing was done with a similar set of experiments ta Se2tHAll

16 generated performances had smaller dynamics errors relative togihalsrihan a robotic/neutral



performance had. For tempo. 11 of the 16 generated performanadettr than a robotic/neutral
performance. Correlations varied from 0.89 for dynamics in Md¢283 to 0.23 for tempo in Mozart
K332. The mean correlation for dynamics was 0.7 and for tempo Wwas A performance generated
by this DISTALL system was entered into RenCon 2002. The compe@&EMP included a simple
accompaniment system where dynamics and timing changes calculatde fmelody notes were
interpolated to allow their application to the accompaniment notes as well. Another additoan
simple heuristic for rendering grace notes: the sum of duraticals grface notes for a main note is set
equal to 5%of the main note’s duration, and the 5% of duration is divided equally amongst the grace
notes. The performance was the top scored automated performance an R02o- ahead of

Kagurame, MIS (Section 3.3.1andHa-Hi-Hun - andt beat one non-automated system

3.3 Linear Regression

Linear Regression models assume a basically linear relationship between thd=&hatares and the
Expressive Actions. The advantage of such models is their simplibiéy,disadvantage is that

assuming music expressive performance a linear process is almostycartaiwersimplification.

3.3.1 Music Interpretation Systemhe Music Interpretation Systems (MIS) [Aono et al
1997][Ishikawa et al. 2000] generates expressive performances infbtidat, but learns expressive
rules from audio recordings. This is done using a spectral analgsesrsyith dynamic programming
for note detection. The system is a simulatory CSEMP and uses alsetaofequations which map
score features on to performance deviation actions. Its expressoepfien is on the note and phrase
level. MIS has methods to include some non-linearities using logical AND&®etmusic features in
the score, and a way of reducing redundantienésatures from its equations. This redundancy
reduction improvegeneralisation ability. MIS learns links between music features and perfoeman
actionsof tempo, dynamics, and articulatiohhe music features used include score expression marks
and aspects of GTTM and two other forms of musicological analysisiat®&deyer’s Theory of
Musical Meaning [Meyer 1957] and Narmour’s IR Theory. Meyer’s Theory— like Narmour’s - is an
expectation-based approach, but coming from the perspective of Gamg.Theor

For testing, MIS was trained on the first half of a Chopin Waltz andubked to synthesize
the second half. Correlations (accuracies when compared to a humampade of the second half)
were: for velocity0.87, for tempo0.75, and for duratiorD.92. A polyphonic MIS interpretation of
Chopin, Op. 64, No. 2 was submitted to RenCon 2002. It cambedridd DISTALL beating 3 of the

other 4 automated systems (DM, Kagurame Hitddun).

3.3.2 CARO CARO [Canazza et al. 2000@anazza et al. 2000anazza et ak003 Canazza et al.
2004 de Poli 2004] is a monophonic CSEMP designed to generate audio filds-witke SaxEx and
MES - express certain moods/emotions. It does not require a scorektdrovar but works on audio
files which are mood-neutral. The files are howeasstimed to include the performer’s expression of
the music’s hierarchical structure. Its expressive perception is at the local note le@ARO’s

performance actions at the note and intra-note level include changes tasgeirderval, brightness,



and loudness-envelope centroid. A linear model is used to learnsaetgvery action has an equation
characterised by parameters called Shift and Range Expansion. Every pieasiofrna particular

mood has its own set of Shift and Range Expansion valueslimhisthe generalisation potential.

CARO also learns “how musical performances are organised in the listener’s mind” in terms
of moods: hard, heavy, dark, bright, light and soft. To dqg thiset of listening experiments analysed
by Principal Component Analysis (PCA) generates a two dimesisgpace that captures 75% of the
variability present in the listening results; this space is used to repiisteners experience of the
moods. A further linear model is learned for each piece of music whigs the mood space onto
Shift and Range Expansion valu@he user can select any point in the mood space, and CARO
generates an expressive version of the piece. A line can be dmwgh mood space, and following
that line in time CARO can generate a performance morphing throughediffmoods. Apart from the
ability to adjust Shift and Range expansion parameters manually, CARO’s potential for creative
performance is extended by its ability to have a line drawn throwgimtiod space. Users can draw

trajectories through this space to create entirely novel performances.

For testing, 20 second clips each from 3 piano pieces by differentosenspwere used. A
panel of 30 listeners evaluated CARO’s ability to generate pieces with different expressive moods.
Results showed that the system gave a good modelling of expressidegperformances as realised by

human performers.

3.4 Non-linear Regression

3.4.1 Drumming Systengo far, we have surveyed pitched instrumenpgano, saxophone and trumpet.
We will now look at a system for non-pitched (drumming) expressionthe introduction we talked
about how pop music had enthusiastically utilised the “robotic” aspects of MIDI sequencers. However
eventually pop musicians wanted a more realistic sound to their electrosic, mod Humanization
systems were developed for drum machines that added random temptiodswvto beats. Later
systems also incorporated what are known as Grooves - a fixed patterrpofdewiations which are
applied to a drum beat or any part of a MIDI sequence (comparable tdeveh€lynes pulse set, see
3.1.3). Such groove systems have been very useful commercigjlgtams like Propellorhead Reason,
where it is possible to generate Groove Templates from a drum trackatrdckpply it to any other
MIDI track [Carlson et al. 2003]. However just as some research has mdydjestations in the
application of Clynes’ composer pulses, so Wright and Berdahl’s [2006] research shows the limits of
groove templates. They did an analysis of multi-voiced Brazillian dinmnecordings and found that
groove templates could only account for 30% of expressive timing.

They investigated other methods to capture the expressive timingausiysiem that learned
from audio files. The audio features examined were a note’s timbre, metric position and rhythmic
context (i.e. timbres and relative temporal position of notes within 1 bélaé dfiput notes- this gives
a low expressive perception). The system learned to map these audi@sfeatto the timing
deviations of each non-pitched note; it is not designed to generate creafwaenpaces, but to
simulate. The mapping model was based on non-linear regression ietwdie features and timing

deviation (versus a quantized version of the beat). They tried three diffeegmbds of learning the



mapping model: Kernel Ridge Regression, Gaussian Process RegressemmdaiNN methods. This
learning approach was found to track the expressive timing of the dnuicts better than the groove
templates, clearly demonstrated in their graphs showing the error ewdnutin patterns. All 3 learning
methods were found to give approximately equal accuracy, thoughsitbelieved that Gaussian
Process Regression had the greatest room for improvement. [Egaen@ provided online. Note that
the system is not only limited to Brazilian drumming, Wright anddBkf also tested it on some
Reggae rhythms with similar success.

3.4.2 Non-linear Piano Systerithe most recent application of a non-linear regression methods to
expressive performance is the system by [Dorard et al 2007]. Mlagiraim is simulatory, to imitate
the style of a particular performer and allow new pieces to be automaticaldynped using the
learned characteristics of the performer. A performer is defingd on the “Worm” representation of
expressive performance [Dixon et al 2002]. The worm is a usefudligation tool for the dynamics
and tempo aspects of expressive performance. It uses a 2D representhtiempit on the x-axis and
loudness on the y-axis. Then, as the piece plays, at fixed periods snadttee(e.g. once per bar) an
average is calculated for each period and a filled circle plotted on the graph at tuye afPast circles
remain on the graph, but their colour fades and size decreases as time fiasseseating the illusion
of a wriggling worm whose tail fades off into the distance in titiethe computer played an
expressionless MIDI file then its worm would stand still, not wriggling at all.

The basis of Dorard’s approach is to assume that the score and the human performances of the
score are two views of the musical semantic content, thus enablingekation to be drawn between
the worm and the score. The system focuses on homophonicrpiesi®- a continuous upper melody
part and an accompanimentand divides the score into a series of chord and melody pairs. Kernel
Canonical Correlation Analysis (KCCA) is then used, a method which ook common semantic
representation between two views. Its expressive perception is based ootéhgroup level, since
KCCA is looking to find correlations between short groups of si@ed the performance worm
position. An addition needed to be made to the learning algorithm to prevennhextseressive
changes in tempo and dynamics. This isisua recurring problem in a number of CSEMPs (see the
Artificial Neural Network Models in Section 3.5, Sibelius in Section 3.1.9, and also S8cti8i).

Testing was performed on Chopin’s Etude 3 Opus 10 the system was trained on the worm of
the first 8 bars, and themied to complete the worm for bars 9 to 12. The correlation between the
original human performance worm for 9 to 12 and the recaristuworm was measured to be 0.95
(whereas the correlation with a random worm was 0.51). However thikingsperformances were

reported - through presumably informal listening tests - to not bepleagant to listen to.



3.5 Artificial Neural Networks

Although many Artificial Neural Networks (ANNS) are just another faimon-linear regression, the
connectionist visualisatiohas supported the development of new “architectures”. At least two

CSEMPs have been produced using dynamic time-based ANN architectures

3.5.1 Artificial Neural Network Piano System. The earliest ANN appraadhe Artificial Neural
Network Piano System [Bresin et al 1990][Bresin 1998]. It has twanatans. The first did not learn
from human performers: a set of 7 monophonic Director Musice wdes selected, and two (loudness
and timing) feedforward ANNSs learned these rules through being tramétem By learning a fixed
model of Director Musices, the ANN les the performance creativity of the k-values. When
monophonic listening tests were done with 20 subjesisg Mozart’s Piano Sonatas K331 and K281,

the Director Musices performance was rated above the non-expressiveteopgrformance, but the
Neural Network performance rated highest of all. One explanation foothaadnce of the ANN over
the original DM rules was that the ANN generalised in a more pleasant waththaumles. The ANN
system by Bresin was a simulation CSEMAHRich also used a separate loudness and timing feedback
ANN. The ANNs were trained using actual pianist performances from MafHer than oM rules;
but some of the independently learned rules turned out to be simikonme DM rules. Informal
listening tests judged the ANNs as musically acceptable. The network labketbntext of four notes
(loudness) and five notes (timing), so had note to phrase-levelssipe perception, though it required

the notes to be manually grouped into phrases before being input.

3.5.2 Emotional FluteThe Camurri et al. [2000] Emotional Flute system uses explicit Musitfésa
and Artificial Neural Networks, thus allowing greater generalisation than theddl8&0O system
(Section 3.3.2). The music features are similar to those used in DiMagices. This CSEMP is
strongly related to Bresin’s second ANN, extending it into the non-piano realm and addinglrepace
modelling. Expressive actions include inter-onset interval, loudnessyibrato. Pieces need to be
segmented into phrases before being input - this segmentation isEatfautomatically by another
ANN. There are separate nets for timing and for loudresst designs are similar to Bresin’s, and
similar levels of expressive perception. There is also a third net for tagicshuof crescendo and
decrescendo at the single note level. However the nets could not be succeasgfellion vibrato, so a
pair of rules were generated to handle it. A flautist performed the first part of Telemann’s Fantasia no.2

in nine different moods: cold, natural, gentle, bright, witty, sericestJess, passionate and dark. Like
CARO a 2-D mood space was generated and mapped on to the perforimaticesANNs, and this

mood spaceanbe utilised to give greater Performance Creativity

To generate new performances the networkedra physical model of a flute. Listening tests
gave an accuracy of approximately 77% when subjects attempted to essigons to synthetic
performances. To put this in perspective, even when listening to itfiesabrhuman performances,
human recognition levels were not always higher than 77%; theigtemtrof emotional moods in

music is a fairly subjective process.



3.6 Statistical Graphical Models

3.6.1 Music Plus Onérhe Music Plus One system [Raphael 2Q@Raphael 2001bRaphael 2003] is
designed to deal with non-piano and polyphonic performances. théadbility to adjust performances
of polyphonic sound files (e.g. orchestral works) to fit as accommanifior solo performers. This
CSEMP contains two modules: Listen and Play modules. Listen uses a Mddev Model (HMM)

to track live audio and find the soloist’s place in the score in real time. Play uses a Bayesian Belief
Network (BBN) which, at any point in a soloist performance and basdldeoperformance so far, tries
to predict the timing of the next note the soloist will play. Music Plus’OBBN is be trained by
listening to the soloist. As well as timing, the system learns the loudoesadh phrase of notes.
However loudness learning is deterministic - it performs the same fomeacmpaniment of the piece
once trained, not changing based on the soloist changing their owressudExpressive perception is

at the note level for timing and phrase level for loudness.

The BBN assumes a smooth changing in tempo, so for any larggeshartempo (e.g. a new
section of a piece) need to be manually markedFap playing MIDI files for accompanimenthe
score needs to be divided up manually into phrases for dynamicsising audio files for
accompaniment such a division is not needtien the system plays back the accompaniment it can
play it back in multiple expressive interpretations dependent on how thst géys. So it has learned

a flexible (almost tempaxdependent) concept of the soloist’s expressive intentions for the piece.

There is no test reported for this systerthe authors state their impression that the level of
musicality obtained by the system is surprisingly good, and aslene#o evaluate the performance
themselves by going to the website and listening. Music Plus One is atteiallyused by composers,
and for teaching music students. It came first at RenCon 2003 iaimpulsory section with a
performance of Chopin's Prelude No. 15 "Raindrop”, beatingdiHdun, Kagurame, an®idmer’s
system To train Music Plus One for this, several performances were recordestl gigya human,
using a MIDI keyboard. These were used to train the BBN. The modekextasded to include
velocities for each note, as well as times, with the assumption that the velocitysvaoiethly (like a
random walk) except at hand-identified phrase boundaries. Then apedammance was generated
from the trained model.

As far as performance creativity goes, the focus on this system somatich to generate
expressive performances, as to learn the soloist’s expressive behaviour and react accordingly in real
time. However the system has an “implicit” method of creating new performances of the
accompaniment the soloist can change their performance during playtdudre is another creative
application of this system: multiple pieces have been composed for ugalheavith the Music Plus
One system - pieces which could not be properly performed withosysthem. One example contains
multiple sections where a musician plays 7 notes while the other plays frfansluvould find it
difficult to do this accurately, whereas a soloist and the system cantogether properly on this

complicated set of polyrhythms.



3.6.2 ESP Piano Systefrindlay’s [2005] ESP Piano system is a polyphonic CSEMP designed — like
Dorard’s system (section 3.4.2- to simulateexpressive playing of pieces of piano music which consist
of a largely monophonic melody, with a set of accompanying chér#idden Markov Model learns
expressive performance using music features such as whethartéhis the first or last of the piece,
the position of the note in its phrase, amgnotes duration relative to its start and the next note’s start
(called its “articulation” here). The expressive perception is up to the phrase level. Phrase division is
done manually, though automated methods are discussed. The adooempas analysed for a
separate set of music features some of which are like the melody eatsies, and some of which are
unique to chords- for example the level of consonance/dissonance of the code (basedhethod
called Euler’s Solence). Music features are then mapped on to a number of expressive attatnas
(for melody) the duration deviation, and the velocity of the note compare average velocity. For
the accompaniment similar actions are used as well as some chord-only, dikgotne relative onset
of chord notes (similar to the Kagurame Chord Time Laggition 3.2.2). These chordal values are
based on the average of the values for the individual notes in the chord.

Despite the focus of this system on homophony, tests were epdyted for monophonic
melodies, training the HMMn 10 graduate performances of Schumann’s Trdumerei. 10 out of 14
listeners ranked the expressive ESP output over the inexpressive vé@sait. of 14 ranked the ESP
output above that of an undergraduate performance. 4 out oféfrprtethe ESP output to a graduate

student performance.

3.7 Evolutionary Computation

A number of more recent CSEMPs have used evolutionary computationdseth general (but not
always) such systems have interesting opportunities for perfoemeneativity. They often have a
parameterization that is simple to changer example a fitness function. They also hanemergent

result which can sometimes produce unexpected but coherent results.

3.7.1 Genetic Programming Jazz Sax. Some of the first researcheesE€ uis computer systems for
expressive performance were Ramirez and Hazan. They did not starinrguE@s beginning with a
Regression Tree system for Jazz Saxophone first [Ramirez and Hza@%h \®e will describe this
before moving on to the Genetic Programming (GP) approach, abdt imsis of their later GP work
A peaformance Decision Tree was first built using C4.5 [Quinlan 1993iis Twas built for
musicological purposesto see what kinds of rules were generateat to generate any performances
The Decision tree system had a 3-note-level expressive perception, aic features used to
characterise a note included metrical position and some Narmour IR analysis. dtesesfwere
mapped on to a number of performance actions from the traininfpripances, such as
lengthen/shorten note, play note early/late and play note louder/softeophamic audio was used to
build this decision tree using the authioosvn spectral analysis techniques and five Jazz standards at
11 different tempos. The actual performing system was built as afRegreather than Decision Tree,
thus allowing continuous expressive actions. The continuous perfoemfeatures simulated were

duration, onset, and energy variation (i.e. loudndds® learning algorithm used to build the tree was



M5Rules[Witten and Frank 2000] and performances could be generated®iail via audio thanks
to the synthesis algorithms. In tests, the resulting correlationsheithriginal performances were 0.72,
0.44 and 0.67 for duration, onset and loudness respectively. Otullimg method where tried
(linear regression and 4 different forms of Support Vector Machines)diduft fare as well
correlation-wise

Ramirez and Hamn’s next system [Hazan and Ramirez 2006] was also based on Regression
Trees, but these trees were generated using Genetic Programming (GR)isvithéal for building a
population of“if-then” Regression Trees. GP was used to search for Regression Tiiebshesbt
emulated a set of human audio performance actibims Regression Tree models were basically the
same as in theprevious paper, but in this case a whole series of trees was genemtedkréhtested
for fithess and then the fittest were used to produce the next genertiees/programs (with some
random mutations added). Fitness was judged based on a distance caltnalated human
performance. Creativity and expressive perception are enhanced bednaaddjtion to modelling
timing and dynamics, the trees modelled the expressive combiningltiglenscore notes into a single
performance note (consolidation), and the expressive insertion of omseveral short notes to
anticipate another performance note (ornamentation). These elements are faimpncom Jazz
Saxophone. It was possible to examine these deviations because the fitoigss fuas implemented

using an Edit Distance [Levenshtein 1966] to measure score edits.

This evolution was continued until average fitness across the populdtiozes ceased to
increase. The use @GP techniques was deliberately applied to giveange of options for the final
performance since, as the authors s&yerformance is an inexact phenomenon”. Also because of the
mutation element in Genetic Programming, there is the possibility cfuahyerformances being
generated. So ih CSEMP has quite a good potential for performance creatNityevaluation was
reported of the resulting trees’ performances - but average fitness stopped increasing after 20

generations.

3.7.2 Sequential Covering Algorithm GAshe Sequential Covering Algorithm Genetic Algorith@¥)
[Ramirez and Hazan 20DWses the Sequential Covering to learn performance. Each covering rule is
learned using a GA; and a series of such rules are built up covering thepndtdiEm space. In this
paper the authors return to their first (non-Bp@per’s level of expressive perception - looking at note
level deviations witbut ornamentation or consolidation. However they make significant imprewesm
over their original non-EC paper. The correlation coefficients for odsedfion, and energy/loudness

in the original system were 0.72, 0.44 and 0-63t in this new system theyere 0.75, 0.84 and 0.86
—significantly higher. And this system also has the advantaglgbtly greater creativity due to its GA

approach.

3.7.3 Generate Performance GAsA parallel thread of EC research is the Zhang and Miranda
[2006a; 2006b] monophonic Generative Performance GAs which eRalge Sets (see Section 3.1.3)
Rather than comparing the generated performances to actual performbackess function here
expresses constraints inspired by the generative performance watk Gid&tke [L994. When a score

is presented to the GA system for performance, the system consirubesoretical timing and



dynamics deviation curve for the melofbne advantage of this CSEMP being thas thusic analysis

is automatic). However this curve is not used directly to generate the getfatmance, but to
influence the evolution. This, together with the GA approach, increasgsetformance creativity of
the system. The timing deviation curve comes fromalgorithm based on Cambouropoulos’ [2001]
Local Boundary Detection Model (LBDM) the inputs to this model are score note timing, pitch and
harmonic intervals. The resulting curve is higher for greater boundarygtstseithe approximate
dynamics curve is calculated from a number of componetite harmonic distance between two notes
(based on a measure by Krumhat991]), the metrical strength of a note (based on the Melisma
software [Temperley and Sleator 1999]), and the pitch height. Thases\aale multiplied for each note
to generate a dynamics curve. The expressive perception of this systensash as the expressive

perception of the methodologies used to generate the theoretical curves.

A fitness function $ constructed referring to the score perception curves. It has 3 main
elements- fitness is awarded if: (1) the pulse set dynamics and timing dedidow the same
direction as the generated dynamics and timing curves; (2) timing deviafenscreased at
boundaries; (3) timing deviations are not too extreme. Part (1) dbesean that the pulse sets are the
same as the dynamics and timing curves-talt else being equal - that if the dynamic curve moves up
between two notes, and the pulse set moves up between those tsyahertethat pulse set will get a
higher fitness than one that moves down there. Regarding f®) — this is reminiscent of the
restriction of expression used in the ANN models anchtireLinear Piano model described earlier. It

is designed to preventing the deviations from becoming too extreme.

There has been no formal testing of this GA work, though the mutleononstrate - using an
example of part oSchumann’s Traumerei and a graphical plot - that the evolved pulse sets are
consistent in at least one example with the theoretical timing and dyndeviggions curves. They
claim that“when listening to pieces performed with the evolved pulse sets, we can perceive the
expressive dynamics of the piece.” However, more evaluation would be helpful because repeating
pulse sets as the expressive action format have been shown to notdssallgiapplicable, and post-

Clynes CSEMPs have shown more success ugingyclic expression

3.7.4 Multi-Agent System with Imitatiorzhang and Miranda [2007] developed the above into a Multi-
Agent System (MAS) with Imitation influencedby Miranda’s [2003] evolution of music MAS study,
and inspired by the hypothesis that expressive music performance strategige through interaction
and evolution in the performers’ society. In this model each agent listens toethgents’ monophonic
performances, evaluates them, and learns from those whosemgarées are better than their own.
Every agent’s evaluation equation is the same as the fitness function used in theupr&A paper,
and performance deviations are modelled as a hierarchical pulse set. So & Baméhexpressive
perception. When an agent hears a performance it evaluates as being beitemothanit attempts to
imitate it but ends up giving a slightly mutated performances irhitating agent then generates a
pulse set internally that matches its mutated performaBce pulse sets are not exchanged,
performances are (just as humans imitate behaviour, not neurahdedying biological processes).

The performances of the system, which were generated thrd@lyeherations of imitation, were



once again not evaluated by the researchers. Though it was foutitetimaitation approach generated
performances more slowly than the previous GA approach.

This CSEMP has significant performance creativity, one reasory libat the pulse sets
generated may have no similarity to the hierarchical constraints of humse gets. They are
generated mathematically and abstractly from agent imitation perform&ucestirely novel pulse set
types could be produced by agents that a human would never gerfematber element that
contributes to creativity is thatithough a global evaluation function approach was used, a diversity of
performances was found to be produced in the population ofsagent

This Zhang/Miranda MAS system has much potential for future woRar example, an
approach could be investigated that aboMeach agent to have its own evaluation function; with some
agents actually basing their evaluation on comparing with humaarpenfices. Furthermore, some
agents could be equipped with entirely novel non-human-fitnessatieal functions. Thus by altering
the proportion of agents with different types of evaluation funstidifferent types of performances
could be generated in the population. Another possibility would balleov more direct user
intervention in shaping performances by letting the user becomgesu in the system themselves.

3.7.5 OssiaLike the Music Emotionality System (Section 3.J,1Dahlstedt’s [2007] Ossia is a
CSEMP which incorporates both compositional and performance aspegisver, whereas MES
was designed to operate on a composition, Ossia is able to generate entirelipche@xpressively
performed compositions. Although we have grouped it as an EC Ilgayétem, technically Ossia is
not a learning system. It is not usig@ to learn how to perform like a human, but to generate novel
compositions and performances. However we include it in this sectiGudeds issues relate more
closely to EC and learning systems than to any of the non-lgasystems (the same reason applies for
the system described in the next subsection 3.7.6). Ossia generates Imosgh ta novel
representational structure that encompasses both composition and performBecersive Trees
(generated by GAs)These are “upside down trees” containing both performance and composition
information. The bottom leaves of the tree going from left to right represtumal notes (each with
their own pitch, duration and loudness value) in the order they are plalgedbranches above the
notes represent transformations on those notes. To generate music thdldtenési— the “leaved
higher up act upon the leaves lower down when being flatteneddaqe a performance/composition.
So going from left to right in the tree represents music in time.tfides are generated recursively
this means that the lower branches of the tree are transformed copigkesfgarts of the tree. Here
we have an element we argue is the key to combined performadceoaposition systems - a

common representationin this case transformations.

This issue of music representation is not something we have addesqdaitly in this
review, being in itself an issue worthy of its own review, fomagles see [Dannenbel@93[Anders
2007]. However we will take a moment now to briefly discuss it. Theesemtation chosen for a
musical system has a significant impact on the functionalkidysia’s representation is what leads to its
combined composition and performance generation abilifies most common music representation

mentioned in this review has been MIDI, which is not able to encode masigeture directly. As a



result some MIDI-based CSEMPs have to supply multiple files to the CSEMP, afildiDdgether
with files describing musical structurklore flexible representations than MIDI include MusicXML,
ENP-score-notation [Laurson and Kuuskank&@)3] WEDEMUSIC XML [Hirata et al 2003],
MusicXML4R [Hashida et al 2006], and the proprietary representations usedrioyecoial software
swch as Sibelius, Finale, Notion, and Zenph High-Resolution MIDI [LaVe®@@6R (which wa
recently used on a released G6automated Disklaviere-performances of Glenn Gould).

Many of the performance systems we have described so far trarefoexpressionless MIDI
or audio file into an expressive version. Composition is often done imi&arsiway — motifs are
transformed into new motifs, and themes are transformed intoerpusitions. Ossia uses a novel
transformation-based music representation. In Ossia, transformations dbudtess and duration are
possible- the inclusion of note transformations here emphasising the compasipewt of the Ossia.
The embedding of these transformations into recursive trees leads werbeation of gradual
crescendos, decrescendos and duration curwesich sound like performance strategies to a listener.
Because of this Ossia has a good level of performance creativity. édsediso create a structure of
themes and expositions. Ossia uses a GA to generate a population of trgesdgesmdor fithess using
such rules as number of notes per second, repetivity, amournérfesi pitch variation, and level of
recursion. These fitness rules were developed heuristically by Dahlstedgh analysi®y-synthesis
methods.

Ossids expressive perception is equal to its compositional perception. Dahlstedt observes
“The general concept of recapitulation is not possible, as in the common ABA form. This does not
matter so much in short compositions, but may be limiting.” So Ossia’s perception would seem to be
within the A’s and B’s, giving it a note to section level expressive perception. In terms of testinthe
system has not been formally evaluated; thatgéas exhibited as an installation at Gaudeamus Music
Week in Amsterdam. Examples are also available on the website, including a ednspds. The
author claimghat the sound examples “show that the Ossia system has the potential to generate and
perform piano pieces that could be taken for furbontemporary compositions.” Having listened to
examples on the website, we were impressed by their natural quddayguestion of how to test a
combined performance and composition, when that system is not e$@mrimulate but to create, is
a sophisticated problem which we will not try to address here. Certaitelyitig tests are a possibility
but these may be biased by the preferences of the listener (e.g. prefexsit@fs classical music, or
pop music). Another approach is musicological analysis but the probiem becomes that
musicological tools are not available for all genres and all peridds example musicology is more
developed for pre-1940 that post-1940 art music.

An example score from Ossia is described which contains detailed dynammiemdtions,
and subtle tempo fluctuations and rubato. This subtlety raises anotleer &sares generated by Ossia
in common music notation had to be simplified to be simply readabteitmans. The specification of
exact microfeatures in a scozanlead to it being unplayable except by computer or the most skilled
concert performer. This has a parallehinbompositional movement which emerged in the 1970s “The
New Complexity”, involving composers such as Brian Ferneyhough and Richard Barret [Toop 1988]

In ”The New Complexity” elements of the score are often specified down to the microfeature level, and



some scores are described as almost unplayable. Compositions such aethisy by human or
computer, bring into question the whole composition/performance dicho{dimgse issues also recall
the end of Ian Pace’s quote in the first section of this review.) However, technical skill limitations and
common music notation scores are not necessary for performance iétkeipbeing written on and
performed by a computer. Microfeatures can be generated as part of theteofar computer-aided)
composition process if desiredh $ystems such as Ossia and MES (Section 3.1aK0), The New

Complexity, the composition/performance dichotomy starts to break d the dichotomy is really

between macrofeatures and microfeatures of the music.

3.7.6 pMIMACS Before discussing the final system in this survey, we will highlighother
motivation for bringing composition and performance closer in CSEMPsig#ificant amount of
CSEMP effort is in analysing the musical structure of the score/aHidizvever, many computer
composition systems generate a piece based on some structure whidtecameomade explicitly
available. So in computer music it is often inefficient to have separate compaaitib expressive
performance systems where a score is generated and CSEMP sees the score as a black box and
performs a structure analysis. Greater efficiency and accuracy woulderegprotocol allowing the
computer composition system to communicate structure information gitedthe CSEMP, o like
Ossa - simply combine the systems using for example a comgpoesentation (where microtiming
and microdynamics are seen as an actual part of the composition prédcesgtem which was
designed to utilis¢his combination of performance and composition is pMIMACS, developetthdoy
authors of this survey. It is based on a previous system MIMAdiIBdtics-Inspired Multi-agent
Composition System), which was developed to solve a specific compasigiooblem (generating a
multi-speaker spatial composition).

pMIMACS combines composition and expressive performanciie aim being to generate
contemporary compositions on a computer which when played baakcomputer do not sound too
machine like In Zhang/Mirand& system (Section 3.7.4) the agents imitate each othexpressie
performances, whereas in pMIMACS agents can be performing entifielsedt pieces of musicThe
agent cycle is a process of singing and assimilatigtially all agents are given their own tunghese
may be random or chosen by the composer. An agent (A) isrchostart. A performs its tune, based
on its “performance skill” (explained below). All other agents listen to A and the agent witimtist
similar tune, say agent B, adds its interpretation’sfivhe to the start or end of B’s current tune. There
may be pitch and timing errors due its “mishearing”. Then the cycle begins again, but with B
performing its extended turia the place of A

An agent’s initial performing skills are defined by the average pitch and standard deviation of their
initial tune - this could be interpreted as the tune they are familiar with pénfpror as the range the
are comfortable performing .iThe further away a note’s pitch is from the agent’s average learned
pitch, the slower the tempo at which the agent will perform. Alsdhér away pitches will be played
more quietly. An agent updates its skill/range as it plays. Every tintay p note, that note changes
the agent’s average and standard deviation pitch value. So when an agent adds astéti@npof

another agent’s tune to its own, then as the agent performs the new extended tune its average and



standard deviation (skill/range) will update accordinglshifting and perhaps widening - changed by
the new notes as it plays them. In pMIMACS an agent also has a fornfarfnpance context, called
an Excitability State. A “excited” agent will play its tune with twice the tempo @f “unexcited”

agent, making macro-errors in pitch and rhythm as a result.

The listening agent has no way of knowing whether the pitches,gsnaind amplitude that it is
hearing are due to the performance skills of the perforagingt, or part of the “original” composition.
So the listening agent attempts to memorize the tune as itihgacduding any performance errors or
changes. As the agents perform to each other, they store interndlexponentially growing piece of
transforming music. The significant and often smooth deviationdempo generated by the
performance interaction will create a far less robotic-sounding pesfagze than rhythms generated by
a quantized palette would do. On the downside, the large-dudlamic texture has the potentia t
become repetitivebecause of the simplicity of the agents’ statistical model of performance skill.
Furthermore the system can generate rests that are so long that tlsitompffectively comes to a
halt for the listener. But overall the MAS is expressing its experience ofitnkdike to perform the
tune, by changing the tempo and dynamics of the tune; atie atame time this contributes to the
composition of the music. No formal listening tests have been letedpyet, but xamples of an
agent’s tune memory after a number of cycles can be listened to at:
http://cmr.soc.plymouth.ac.uk/pmimacs

There is also a more subtle form of expression going on relating to thechieah structure of the
music. The hierarchy develops as agents pass around an ever gsawiggf phrases. Suppose an
agent performs a phrase P and passes it on. Later on it may receive back a “super-phrase” containing
two other phrases Q and-Rn the form QPR. In this case A will perform P faster than QRaufsince
it knows P). Now suppose in future A is passed back a super{shizese of, say, SQPRTQPRTS, then
potentially it will play P fastest, QPR second fastest (since it has playech&€®BiR) and the Sand T
phrases slowest. So the tempo and amplitude at which an agent performs tISBQPREQPRTS is
affected by how that phrase was built up hierarchically in the composition/imifatigess. Thus there
is an influence on the performance from the hierarchical structureeahtisic. This effect is only
approximate because of the first order statistical model of performatice ski

Despite the lack of formal listening tests, we report pMIMACS here as a systégmeld from the

ground up to combine expressive performance and composition.

4. SUMMARY

We began our review of automated and semi-automated computer si@mtexpressive performance,
by developing four terms of reference which were inspired from rese#lcomputer composition
systems, and we have brought it to a close with a pair of systemguthstton the division between
expressive performance and composition. So there are clearlytampes for to these two areas to
learn from each other in the context of computer music. Before mvmatise furtheranother viewing
of Table | at the start of the review may be helpful to the reader.

Expressive Performance is a complex behaviour with many causatig@i@ns— so it is no

surprise that in this review that more than half the systems prodzedbeen learning CSEMPS


http://cmr.soc.plymouth.ac.uk/pmimacs

usually learning to map music features on to expressive actionsedske performance actions most
commonly included timing and dynamics adjustments, with some arigyland the most common
non-custom method for analysis of music features was GTTMwetldy IR. Dues to its simplicity in
modelling performance, the most common instrument simulasspiano— but interestingly this was
followed closelyby saxophone possibly because of the popularity of the instrument in the dawe.g
Despite, and probably because, of its simplicity - MIDI is still the mostilpopepresentation.

To help structure the review, four primary terms of reference weretesled@ esting Statuys
Expressive PerceptipiNlon-monophonic Ability, and Performance Creativity. Having apphese, it
can be seen that only a subset of the systems have had any formg| testifor some of them
designing formal tests is a challenge in itself. This is not that unexpedatte testing a creative
computer system is an unsolved problem. Also about halfeokyistems were only been tested on
monophonic tunes. Polyphony and Homophony introduce problethsito terms of synchronisation
and in terms of music feature analysis. Further to music feature anathast of the CSEMPs had an
expressive perception up to one bar/phrase, and over idaliotl look at the musical hierarchy.
However avoiding musical hierarchy analysan have the advantage of increasing automation. We
have also seen that most CSEMPs are designed for simulation of lexprssive performances
general or specific- a valuable research goal, and one which has possibly been influendbd by
philosophy of human simulation in machine intelligence research

The results for the primary terms of reference are summarized in Valilee numerical
measures in columns 1,2 and 4 are an attempt to quantify observations,fiamalddto 10. The more
sophisticated the expressive perception of music features (levels of the hietanchgny, etc), the
higher the number in column 1. The more extensive the testingdinglinformal listening, RenCon
submission, formal listening, correlation and/or successful utilisation irfieldd the higher the
number in column 2. The greater we perceived the potential of a systemalde the creative
generation of novel performances, the higher the number in cofum®@bviously such measures
contain some degree of subjectivity but should be a useful indicatanjone wanting an overview of
the field, based on the 4 elements discussed at the start of this paper. Fitponesda 3D plot of

summary table V.

5. CONCLUSIONS

There have been significant achievements in the field of simulatingrhomsical performance in the
last 25 years, and there many opportunities ahead for futureviempemts in simulation. In fact one
aim of the RenCon competitions is for a computer to win thepl@hmmpetition by 2050. Such an aim
begs some philosophical and historical questions, but nonetheless captileesltbé progress being
made in performance simulation. The areas of expressive perceptiaorantonophonic performance
appear to be moving forwards. However the issue of testing and evalst@tioequires more work and

would be a fruitful area for future CSEMP research.



CSEMP Expressive Testing Status | Non- Performance
Per ception monophonic | Creativity
Director Musices 6 10 Y 8
Hierarchical Parabola Model| 9 7 3
Composer Pulse 6 9 Y 5
Bach Fugue 6 4 Y 3
Rubato 6 4 Y 8
Trumpet Synthesis 4 1 3
MIS 6 6 Y 3
ANN Piano 4 6 3
Music Plus One 4 7 Y 4
SaxEx 6 1 8
CARO 3 6 7
Emotional Flute 4 6 6
Kagurame 9 8 Y 3
Ha-Hi-Hun 6 6 Y 8
PLCG 4 6 3
Phrase-decomposition/
PLCG 10 6 3
DISTALL 10 9 Y 3
Pop-E 6 10 Y 8
ESP Piano 6 6 Y (untested) | 3
Non-linear Piano 4 6 Y 3
Drumming 3 6 3
Genetic Programming 7 6 6
Sequential Covering GAs 6 6 6
Generative Performance GAs| 9 4 8
MAS with Imitation 9 1 9
Ossia 6 4 Y 10
Music Emotionality 6 6 Y 10
pMIMACS 9 1 10

Table V. Summary of the 4 primary terms of reference

Another fruitful area for research is around the issue of the autanwdtibe music analysis.
Of the eight CSEMPs with the highest expressive perception, almost hathoféigquire some manual
input to perform the music analysis. Also manual marking of theesicwo phrases is a common
requirement. There has been some research into automating musical analysias sGAnTM
[Masatoshi et al 2005]. The usage of such techniques, and the investighfiorther automation

analysis methods specific to expressive performance, would be damdfibution to the field.
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The field could also benefit from a wider understanding of the conveggeinperformance

and composition elements in computer music. For reasons of efficientrollability and creativity

which have already been detailed, research into combined performance/compysitions would be

a fertile area for further computer music research. Here computer camposaitd computer

performance research can cross-fertilise: performance algorithms for @xgpredsucture and

emotion/mood can help composition, as well as composition providimg omeative and controlled

computer performance. The question is also open as to what fornaosdfuman expression can be

developed and provide whole new vistas of the meaning of the phrase “expressive performance”,

perhaps even for human players.

One final observation regards the lack of neurological and physical maidptsformance

simulation. The issue was not included as a part of our terne$enénce, since it is hard to objectively

guantify. But we would like to address this in closing. Neurological pimgsical modelling of

performance should go beyond ANNs and instrument physical magellihe human/instrument

performance process is a complex dynamical system about whéch Has been some deeper

psychological and physical study. However attempts to use these hypothesa®lap computer

performance systems have been rare. More is being learned aboutrdilecagelates of music and
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emotion [Koelsch and Siebel 20@ritton et al. 2006][Durrant et al 2007], and Eric Clarke [1993] has
written on the importance of physical embeddedness of human pert@ntut although researchers
such as Parncutt [1997] (in his virtual pianist approach) and @fifvlidmer and Goebl 2004] have
highlighted the opportunity for deeper models, there has been little pdlBbgress in this area of
the CSEMP field.

So to conclude - the overarching focus so-far means that there @oduojties for some
better tested, more creative, and neurological and physical models af lpenfiarmance. These will
be systems which not only help to win the Chopin contestlbatto utilise the innate efficiencies and
power of computer music techniques. Music psychologists (and nagits) will be provided with
richer models; composers will be able to work more creativetiie micro-specification domain, and
more easily and accurately generate expressive performances of theirAwdrithe music industry
will be able to expand the power of humanisation tools creating new effigeimcieecording and

performance
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