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Methodolgies for Expressiveness Modeling of and for Music Performance

Giovanni De Poli
Centro di Sonologia Computazionale
Department. of Information Engineering Padova University
University of Padova

ABSTRACT

Expression is an important aspect of music performance.
It is the added value of a performance, and is part of the
reason that music is interesting to listen to and sounds
alive. Moreover, understanding and modeling expressive
content communication is important in many engineering
applications. In human musical performance, acoustical
or perceptual changes in sound are organized in a complex
way by the performer in order to communicate musical
content to the listener. The same piece of music can be
performed trying to convey a specific interpretation of
the score by adding mutable expressive intentions. The
analysis of these systematic deviations has led to the
formulation of several models that try to describe their
structures, with the aim of explaining where, how and why
a performer modifies, sometime in an unconscious way,
what is indicated by the notation of the score. Modeling
paradigms and problems are reviewed and issues for future
research efforts are discussed.

1. INTRODUCTION

Music is an important means of communication where
three actors participate: the composer, the performer and
the listener. The composer instills into the works his/her
own emotions, feelings and sensations, and the performer
communicates them to the listeners. The composer de-
scribes his musical ideas by a score or a process. The
information contained in the score (or produced by the
process) has a double function: a descriptive one, as a
symbolic representation of the cognitive elements consti-
tuting the composition, and a functional one, as a way to
convey instructions to the performer. Other information
is implicit in the score and regards performance style and
interpretative conventions. The performer interprets these
symbols, taking into account the implicit information and
the personal artistic feeling and aim, and produces the
sounds by using a musical instrument. Music perfor-
mance includes all the human activity that lies between the
symbolic score and the music instrument.

Music performance is an interesting topic to study for its
multi-disciplinary significance. In this paper paradigms
and issues emerged in research on modeling expressive-
ness in music performance will be reviewed and future

This is an Author’s Accepted Manuscript of an article published in the Journal of
New Music Research, vol. 33, issue 3, pp. 189-202, 2004 , available online at:
http://www.tandfonline.com/ [DOI:10.1080/0929821042000317796]

research perspectives will be discussed. The literature in
music performance analysis and modeling is large. After
a first pioneering phase in the forties when Seashore and
his group (Seasore, 1936) collected and analyzed many
objective measurements from performances, not much
activity was done until the seventies. Then a new interest
on this field arose, with a wealth of empirical work. Good
overviews are presented by Gabrielsson (1999); ? and
Palmer (1997). In the following we will discuss perfor-
mance modeling approaches mainly from a information
processing point of view. In Section 2 we will present the
basic issue on what models and computational models are
used for, and we will discuss expression communication
in music performance. In Section 3 we will introduce the
aspect of how musical information is represented for mod-
eling purposes. Finally in Section 4 the main strategies
used in model development will be presented in detail.
Models for understanding, performance synthesis, and
artistic creation will be discussed.

2. BASIC ISSUES
2.1 Models

Frequently in science, models are employed to evidence
and abstract some relations that can be hypothesized, dis-
carding details that are felt to be not relevant for what is
being observed and described. Models can be used to pre-
dict the behavior in certain condition and compare these
results with observations. In this sense, they serve to gen-
eralize the findings and have both a descriptive and predic-
tive value.

In the study of music performance, models for describing
music performance start being developed soon. The possi-
bility, offered by technology, of implementing the models
and to experiment with their behavior by simulation gave
rise to an increased use of technology in music research.
Moreover, computer science and music technology devel-
oped many conceptual frameworks and practical tools in
the last decades, that are very useful for music performance
investigation. For example artificial intelligence, knowl-
edge engineering, soft computing methodologies, physics
based models, MIDI instruments, signal processing anal-
ysis methods, computer controlled performance, motion
capture devices, constitute paradigms and tools that are ba-
sic of many performance models.

The idea of developing computational models of music
performance dates back to the first music application of
computers. It can be mentioned the Groove system by



Matthews and Moore (1970) that allowed real time con-
trol and editing of performer actions described (graphi-
cally or symbolically) by time functions. The first mod-
els were mainly dedicated to music production and exper-
imentation, and were embedded in computer programs for
music synthesis or representation and for interactive per-
formance. Their theoretical assumptions and conceptual
foundation were often not explicit. Later models for per-
formance understanding started to be developed (e.g. KTH
performance rule system (Sundberg et al., 1983)) and now
we can expect a convergence of efforts toward models that
are oriented toward both performance understanding and
production.

We can distinguish two kinds of models. The complete
model tries to explain all of the observed performance de-
viations on the basis of the given data. This approach tends
to give very complex models and thus poor insight into the
relevant relations. In fact, note level analysis cannot ex-
plain all the observed deviations. The other kind is the
partial model, which aims only to explain what can be ex-
plained at note level, giving a small and robust set of rules.
Moreover, when rules for categorical decisions (e.g., play
faster of slower) rather than for computing an exact value
are used, more understandable results can be obtained.

2.2 From mathematical models to information
processing models

The classic way to describe relations in models is by using
mathematical expressions composed of observable (and of-
ten measurable) facts called variables or parameters. De-
veloping and then validating mathematical models is the
typical way to proceed in science and engineering. Of-
ten the variables are divided into input variables, supposed
known, and output variables, which are deduced by the
model. In this case, inputs can be considered as the causes
and output the effect of the phenomenon. A mathemati-
cal model can be implemented on a computer by numeri-
cal analysis techniques. In this way, we can compute the
values of output variables corresponding to the provided
values of inputs. This process is called simulation and it is
widely used to predict the behavior of the phenomenon in
different circumstances.

However, a computer does not only deal with numerical
values. More generally, it can be considered as information
processing engine. From this perspective, models describe
relations between different kinds of information about the
phenomenon. Thus, a fundamental problem in developing
information processing models is to define which kind of
information we want to deal with and how we may repre-
sent it on a computer.

The case of music performance is quite interesting; in
fact, the information that can be considered regards many
aspects. We can distinguish three layers. The first is the
physical information that can be measured, as timing or
performers movements. This information can be repre-
sented as numbers and is typically used and processed by
mathematical tools. The second layer is the symbolic in-
formation as the score, where the notes are represented by
symbols in the common music notation. These symbols

refer more to a cognitive organization of the music than to
an exact physical value. For example, the duration symbol
indicates a division of the meter, while the actual duration
of a performed note can vary. Processing at this level uses
typical symbolic and logic representations of computer sci-
ence. At a higher level, we have the expressive information
more related to the affective and emotional content of the
music. Recently computer science and engineering started
paying attention to this level of information and develop-
ing suitable theories and processing tools. Music and mu-
sic performance in particular, attracted the interest of re-
searchers for developing and testing such tools. Moreover
in performance modeling, all the information levels should
be taken into account in a coordinated way. As a conse-
quence, information representation and model structure are
crucial topics in model design and will be discussed in sec-
tion 3.

2.3 Expressiveness in music performance

The communication of expressive content by music can
be studied at three different levels: considering composer
message, performer expressive intentions and listener per-
ceptual experience. Studies of the first kind are historically
more developed. Generally, they analyze the elements of
the musical structure and the musical phrasing that are crit-
ical for a correct interpretation of composers message.

The contribution of the performer to expression commu-
nication has two facets: to clarify the composers message
by enlightening the musical structure and to add his per-
sonal interpretation of the piece. A mechanical perfor-
mance of a score is perceived as lacking of musical mean-
ing and is considered dull and inexpressive as a text read
without any prosodic inflexion. Indeed, human perform-
ers never respect tempo, timing and loudness notations in
a mechanical way when they play a score: some devia-
tions are always introduced, even if the performer explic-
itly wants to play mechanically (Palmer, 1989).

Thus in general expressiveness refers both to the means
used by the performer to convey the composer message
and to his own contribution to enrich the musical message.
However many music performance studies concentrate on
the first aspect trying to understand the performer actions
to better convey the musical structure. Simulation mod-
els are often evaluated by the musical acceptability of their
results, or in other words how well a supposed ideal in-
terpretation of that particular piece is approached. Expres-
siveness related to the musical structure may depend on the
dramatic narrative developed by the performer, on physi-
cal and motor constraints or problems (e.g. fingering), on
stylistic expectation based on cultural norm (e.g. jazz vs.
classic music) and on the actual performance situation (e.g.
audience engagement) (Clarke, 1995). Figure 1 shows the
relation between dynamics profiles and the main elements
of music structure of the first measures of a piano perfor-
mance of Mozart sonata K 545 (figure 2). It is particularly
evident that the musician emphasized with a decrescendo
the end of the first inciso (bar 2), the first semi-phrase (bar
4), the first phrase (bar 8) and the period (bar 16).

Recently interest is growing also in taking into account
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Figure 1. Dynamics profiles and the main elements of mu-
sic structure of the first measures of a piano performance
of Mozart sonata K 545 (figure 2). It is particularly evident
that the musician emphasized with a decrescendo the end
of the first inciso (bar 2), the first semi-phrase (bar 4), the
first phrase (bar 8) and the period (bar 16).
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Figure 2. Score of the first 16 measures Mozart sonata K
545. The arrows indicate the end of the first inciso (bar 2),
the first semi-phrase (bar 4), the first phrase (bar 8) and the
period (bar 16).

the expression component added by the performer. Some
aspects are still strongly related to the musical piece, as
performer specific style, and influences of stylistic expec-
tation based on cultural norm (e.g. jazz vs. classic mu-
sic) or actual performance situation (e.g. audience engage-
ment). Nevertheless, other communicative aspects can be
taken into account. Experiments are carried out by ask-
ing performers to play the same piece according diverse
specific adjectives or nuances or trying to convey differ-
ent content. The researcher then seeks to understand and
model the strategies used in these performances. Often ba-
sic emotions are chosen as possible expressions (Gabriels-
son and Juslin, 1996). and in this case the term expres-
sive performance refers to emotional performance. Notice
that sometimes the emotions the performer tries to convey
can be in contrast with the character of the musical piece.
A slightly broader interpretation of expression as KANSEI

(Japanese term indicating sensibility, feeling, sensitivity)
(Suzuki and Hashimoto, 2004) or affective communication
(Picard, 1997) is proposed in some Japanese or American
studies. We prefer the broader term expressive intentions
that include emotion, affections as well as other sensorial
and descriptive adjectives or actions. Furthermore, this
term evidences the explicit intent of the performer in com-
municating expression.

Understanding of specific artistic intentions of top-level
performers is more challenging. While artists aim to ex-
press aesthetic value, We feel that these qualities are proba-
bly impossible to model, without loosing their real essence.

3. INFORMATION AND MUSIC PERFORMANCE
3.1 Expressive performance parameters

When we want to develop an information processing
model, it is important to define which is the relevant
information we will use. This choice depends on the
phenomenon we are observing and on the available de-
tection techniques. In our case, we want to describe
music performance and we can observe the variations a
music performer is doing when he plays. This kind of
information is often called expressive parameters. The
most relevant information used in performance models are
discussed in this section.

At a physical information level, the main expressive pa-
rameters considered in the models are related to timing of
musical events and tempo, dynamics (loudness variation),
and articulation (the way successive notes are connected).
These parameters are particularly relevant for keyboard in-
struments. Moreover, they are the basic parameters of the
MIDI protocol and thus are easily measurable on electronic
music instruments or employable for obtaining a music
performance. For some instruments and for the singing
voice other acoustic parameters are taken into account such
as vibrato and micro-intonation, or pedalling on the piano.
In contemporary music, timbre is often an essential expres-
sive parameter; sometimes also virtual space location or
movement of the sound source is used as expression fea-
tures..

These parameters can be measured directly by a MIDI
musical instrument or (with more effort) by detecting the
performer movements. However, it should be noted that
these measurements depend on an accurate instrument cal-
ibration. In fact, the relation between MIDI commands and
their sonic realizations depends greatly on the instrument.
For example, the Note-off command indicates the begin-
ning of the sound decay and not the ending of the note, as
might often be desired.

Physical information can also be gathered from audio
recordings. Additional expressive parameters can be taken
into account, such as timbre. However, the performance
parameters are more difficult to collect automatically,
especially for multi-voice music, and depend on the
recording conditions. Different methods are often used
and thus the measurements reported in the literature may
be not directly comparable. This fact contributes to make
the accumulation of knowledge difficult. For instance, it



is not always clear exactly when a tone starts, nor when
the attack phase can be considered completed. The am-
plitude envelope inspection is not sufficient. Therefore,
the attack duration of a note can be measured in different
ways, leading to dissimilar values. On the other hand,
in real-time applications we need effective but not too
complex feature analysis algorithms. It is advisable that
the progress of computational analysis techniques should
provide useful and standardized tools for performance
parameter detection.

The interrelation of these physical parameters is not well
understood. Therefore, models often try to separate the
parameters and to model their effect separately, or to deal
with a combination of very few of them. The problem is
particularly evident when we want to model some effects
that can be rendered in different ways. For example, the
performer can emphasize a note by increasing its loudness,
or by lengthening its duration or by a slight time shift, or by
a particular articulation or timbre modification. The use of
more abstract representations could probably help in sep-
arating the lowlevel features from higher-level ones. This
approach would call for multi-level models or a combina-
tion of models acting at different abstraction levels. For
instance, in the previous example a model can decide that
a note should be emphasized because of its structural im-
portance, and a second model will decide how to realize the
emphasis taking into account the context, the expressive re-
sources of the instrument, stylistic expectations etc. While
the performer probably uses such multi-level strategies in-
tuitively in his/her musical practice, a precise definition of
intermediate parameters, effective for modelling purposes,
is still partial. More research is needed for the selection of
these intermediate parameters, for finding a possible quan-
tification, and for assessing their effectiveness.

The interrelation of these physical parameters is not well
understood. Thus, often models try to separate the param-
eters and to model their effect separately or to deal with
a combination of very few of them. The problem is par-
ticularly evident when we want to model some effects that
can be rendered in different ways. For example, the per-
former can emphasize a note by increasing its loudness, or
by lengthening its duration or by a slight time shift, or by
a particular articulation or timbre modification. Probably
the use of more abstract representations could help in sep-
arating the low-level features from higher-level ones. This
approach would call for multilevel models or a combina-
tion of models acting at different abstraction level. For
instance in the previous example, a models can decide that
a note should be emphasized because of its structural im-
portance and a second model will decide how to realize
the emphasis taking into account the context, the expres-
sive resources of the instrument, stylistic expectations etc..
While probably, the performer uses intuitively such mul-
tilevel strategies in his/her musical practice, a precise def-
inition of intermediate parameters, effective for modeling
purpose, is still partial. More research is needed for the
selection of these intermediate parameters, for finding a
possible quantification, for assessing their effectiveness.

As regards symbolic information, the score is a typ-

ical reference and it is usually represented as a list of
time events. More difficult is the representation of the
musical structure. The knowledge is only partially for-
malized, especially toward classical music. Very few
computational models have been proposed for automatic
(or semiautomatic) structure extraction from the score
(Lerdahl and Jackendorff, 1983; Narmour, 1900; Cam-
bouropoulos, 1997) and their results are not very reliable.
Thus the segmentation and the structure is often intro-
duced by hand. The classic paradigm derives from early
language modelling and consists in musical grammars
represented as a hierarchical tree structure (e.g., phrase,
sub-phrase, melodic gesture, note). This paradigm is much
less applicable for contemporary music where other musi-
cal parameters and constructs are more pertinent. Music
performance research will greatly benefit from theoretic
advancements in contemporary music analysis.

The understanding of the expressive information is still
vague. While its importance is generally acknowledged,
the basic constituents are less clear. Often the simple range
expressiveinexpressive is used. The most frequently used
paradigms for representing emotions in music performance
modelling are the basic emotions and the dimensional ap-
proach, e.g., the valence-arousal space (Juslin, 2001). The
dimensional approach was also used with success for other
kinds of expressive intentions (Canazza et al., 2003). In
this field too, more research and experimental insight will
be very fruitful (see Scherer (2004) for a discussion). On
the other hand continuous measurements of subject reac-
tions during a performance, recently used in psychological
research (see, e.g., Schubert (2001)), may provide useful
data and parameters for performance research.

3.2 Information representation

A key issue is how the model represents the information.
The most important aspect is the representation of time.
Time can be considered from both a physical and a sym-
bolic point of view. The first one, performance-time, refers
to the actual time that can be measured during a perfor-
mance. The second refers to the position in the score (e.g.,
phrase or measure) and is often called score-time or score
position; it is often measured in units (or subunits) of mea-
sure. Models of timing normally aim to describe the rela-
tion between performance and score time (Honing, 2001).
Performers adapt performance time of musical events in
subtle way. Understanding models try to explain these
variations, while synthesis models compute these varia-
tions.

Another important aspect of time representation is tempo
that is the reciprocal of durations as a function of score po-
sition. Traditionally it is measured by a metronome (M.M.)
number indicating the number of beats per minute (bpm) of
performance time. A distinction may be made between the
mean tempo (i.e., the average tempo across the whole piece
disregarding possible variations); the main tempo (i.e., the
prevailing tempo when passages with momentary varia-
tions such as slow start, final ritard, fermatas, and amor-
phous caesuras are excluded); the local tempo, which is
maintained only for a short time and is measured as the



inverse of the inter-onset interval relative to its nominal
length in the score (Repp, 1992; Gabrielsson, 1999). Al-
though it is still unclear what exactly constitutes the per-
ception of tempo, it seems to be related at least in metrical
music to the notion of beat or tactus; the speed at which the
pulse of the music passes at a moderate rate (i.e., the met-
rical level at which one counts the beat (Honing, 2002)).

Models for understanding usually describe tempo as
function of score position and measure it in seconds per
metrical or score unit. In this case, global and local tem-
pos are considered, depending on the time scale. Typical
representation are the duration of a measure and the rel-
ative inter-onset interval (IOI), i.e., the time difference
between the next event and the actual event divided by
the symbolic (score) duration. Notice that the inter-onset
interval is not the physical duration of a note; notes can be
played staccato or legato, greatly affecting their expressive
character.

While tempo and timing both refers to time values, they
tend to be perceived somewhat independently by listeners.
Thus, timing models should take into account both aspects
trying to separate them (Honing, 2001). A study trying to
address that problem has been presented by Cambouropou-
los et al. (2001). Often expressive timing is considered
as describing the timing deviations in a performance (e.g.,
accentuating notes by lengthening them slightly, or play-
ing notes after the beat). In addition, timing might be per-
ceived independently of any changing tempo (tempo ru-
bato). So it could be argued that expressive timing and
expressive tempo possibly co-exist as two, relatively in-
dependent, perceptible aspects of a performance (Honing,
2002).

The musical parameters used in modelling can be rep-
resented as values or attributes of discrete time instants
(musical events) such as notes or structural units. Alterna-
tively they can be represented as profiles, i.e., as functions
of continuous (performance or score) time. An example
of discrete time representation is the articulation of timing
of individual notes or the micropauses between melodic
units. An example of continuous time representation is the
vibrato of a note or a crescendo curve. The first representa-
tion is more related to the symbolic level, while the second
relates to the physical level. The choice depends on the
aim of a model, on availability of data, and on their abil-
ity to explain. Sometimes models combine both kinds of
representations or are able to transform data from one to
the other representation, e.g., by interpolation or sampling.
For example, a crescendo is a discrete parameter for the
piano, but not for other instruments, e.g., the violin. More-
over it can be interpreted as continuous curve sampled at
the note onsets.

Another aspect of the representation is the granularity.
When possible, the information is represented as numer-
ical values. Sometimes absolute values, e.g., time interval
in milliseconds, sometimes relative values, e.g., relative
inter-onset interval, are used. In this case the inter-onset
intervals are represented as normalized to their score dura-
tion (see, e.g., Repp (1992)), or at a certain metrical level,
most often the beat level (see, e.g., Shaffer et al. (1985))

or the bar level (see, e.g., Todd (1985); Repp (1992)). In
this last way, the timing pattern becomes a local tempo in-
dicator. In other situations the information is categorical,
describing one choice among few alternatives, e.g., stac-
cato versus legato, shortening versus lengthening. Even for
granularity, the effectiveness of the representation depends
on the problem we are dealing with and on the musical
context (see, e.g., Timmers and Honing (2002)). However,
in symbolic representation of music often the concepts are
not easily expressible as numbers or as precisely defined
categories. A possibility of using effectively vague defini-
tions is offered by the techniques of soft computing such as
fuzzy sets (Bresin et al., 1995a,b; Weyde and Dalinghaus,
2003).

Music is an organization of events in time and often a
hierarchical time structure can be envisaged. Therefore,
models are developed for representing performance as-
pects at different time scales (Lerdahl and Jackendorff,
1983; Friberg, 1995; Todd, 1992, 1995; De Poli et al.,
1998). We may have models at note scale, e.g., for attack
time or vibrato, at local scale considering only few notes,
e.g., articulation of a melodic gesture, or at a more global
scale, e.g., for phrase crescendo. The most complete mod-
els deal with the different time scales by using distinct but
coordinated strategies.

3.3 Expressive deviations

Most studies of performance expressiveness aims at un-
derstanding the systematic presence of deviations from the
musical notation as a communication means between mu-
sician and listener. Deviations introduced by technical con-
straints (such as fingering) or by imperfect performer skill,
are not normally considered part of expression communi-
cation and thus are often filtered out as noise. Deviations
considered in models normally refers to the expressive per-
formance parameters as discussed above.

The analysis of these systematic deviations has led to
the formulation of several models that try to describe their
structure, with the aim to explain where, how and why a
performer modifies, sometimes unconsciously, what is in-
dicated by the notation in the score. It should be noticed
that, although deviations are only the external surface of
something deeper and often not directly accessible, they
are quite easily measurable, and thus widely used to de-
velop computational models in scientific research and gen-
erative models for musical applications.

When we talk of deviation, it is important to define which
is the reference used for computing deviation. Very often
the score is taken as reference, both for theoretical (the
score represents the music structure) and practical (it is
easily available). However, the use of a score as refer-
ence has some drawbacks for the interpretation of how lis-
teners judge expressiveness. Alternative approaches are
the intrinsic definitions of expression (expressive devia-
tions defined in terms of the performance itself) (Gabriels-
son, 1974; Desain and Honing, 1991) or non-structural ap-
proaches relating expression to motion, emotion, etc. (see
Clarke (1995) for a general discussion). The idea is that,
from the structural description of a music piece, we can in-



dividuate units which can act as a reference at that level.
Its subunits will act as atomic parts whose internal detail
will be ignored. Then expression is defined as the devia-
tion from the norm as given by a higher level unit. For ex-
ample. the expressive variations of the durations of beats
are expressed with reference to the bar duration (as ratio).
Using this intrinsic definition, expression can be extracted
from the performance data itself, taking more global mea-
surements as reference for local ones. (Desain and Honing,
1991).

However the choice depends on the problem we are deal-
ing with. When we studied how a performer plays a piece
according to different expressive intentions, we found that
a clearer interpretation and best results in simulation are
obtainable by using a neutral performance as reference
(Canazza et al., 2004). We intend neutral in the sense of
a human performance without any specific expressive in-
tention. By neutral we intend a human performance with-
out any specific expressive intention. In other studies the
mean performance (i.e., the mathematical mean across dif-
ferent performances by the same or many performers) was
taken as the reference when stylistic choices and prefer-
ences were investigated (e.g., Repp (1992, 1997)).

4. MODELS OF/FOR MUSIC PERFORMANCE

Models are developed with different aims. A basic differ-
ence is between models of music performance, i.e. models
for understanding (also called analysis models), and mod-
els for music performance, i.e. models able to produce
music performances (also called synthesis models). In the
following sections, the main paradigms will be presented
and discussed.

4.1 Model structures

In developing and using models it is often convenient to
break the problem into simpler parts, each one described
and modelled by a proper strategy, and then combine ev-
erything into a larger unit. In the following, the principal
way used to combine rules or models will be discussed.
The first, and frequently used, strategy assumes that the
partial results computed by sub-models can be added to
obtain the final result. For example, the deviations com-
puted by the KTH rule system are obtained by a weighted
sum of the deviations computed by the single rules (Sund-
berg et al., 1983, 1989; Friberg et al., 1991, 1998). Another
application is when the final result is obtained as sum of
profiles at different time scale, e.g. the crescendo and ac-
celerando curves computed for phrases and sub-phrases by
Todd (Todd, 1992, 1995). An application of this strategy in
analysis is when the principal component analysis (PCA)
of measured deviations on a musical passage is used to
highlight differences among performing styles of different
pianists (Repp, 1992). In fact PCA involves a mathemati-
cal procedure that transforms a number of (possibly) cor-
related variables into a (smaller) number of uncorrelated
variables called principal components. The first principal
component accounts for as much of the variability in the
data as possible, and each succeeding component accounts

for as much of the remaining variability as possible. The
original data are thus expressed as a linear combination of
(few) significant and independent variations around their
mean values.

The additivity hypothesis is attractive from both a math-
ematical and a practical point of view; it allows the use
of many computational tools and it is easily interpretable.
However, it may result in over-simplifying and tends to
hide the interrelation of different aspects of performance.
A partially different strategy for combining numerical val-
ues consists in multiplying the partial results. It is often
used when relative values are employed. Of course taking
the logarithms will transform it in an additive strategy.

More complex is the nonlinear combination of the
sources y = f(x1,22,...,2n). In this way the interre-
lations of inputs can taken into account. An example is
the use of feed-forward neural networks as general ap-
proximators of observed performance deviations (Bresin,
1998).

Models are sometimes combined using the output of a
model as input to a second one, i.e. by functional com-
position, as in cascade model that compute y = f[g(x)].
A typical example is timing function composition as dis-
cussed by Honing (2001).

A more general approach is in hierarchical models when
they operate at different abstraction level. The information
is processed and combined at the proper level. An example
is the distinction of rules and metarules in the KTH sys-
tem, where the metarules choose the proper setting of ba-
sic rules to express, for example, different emotion (Bresin
and Friberg, 2000).

From another point of view we may identify local mod-
els, that acts at note level and try to explain the observed
facts in a local context (see, e.g., Friberg et al. (1991);
Widmer (2002)). A different perspective is assumed by
phrasing models (see, e.g., Todd (1992, 1995); Battel and
Fimbianti (1999); Widmer and Tobudic (2003)) that take
into account higher levels of the musical structure or more
abstract expression patterns. The two approaches often re-
quire different modelling strategies and structures. In cer-
tain cases it is possible to devise a combination of both ap-
proaches with the purpose being to obtain better results.
The composed models are built by several components,
each one aiming to represent the different sources of ex-
pression. However, a good combination of the different
parts is still quite challenging.

4.2 Comparing performances

A problem that normally arises in performance research is
how performances can be compared. In subjective com-
parisons often a supposed ideal performance is taken as
reference by the evaluator. In other cases, an actual refer-
ence performance can be assumed. Of course subjects with
different backgrounds can have dissimilar preferences that
are not easily made explicit.

However when we consider computational models, ob-
jective numerical comparisons would be very appealing.
In this case, performances are represented by a set of val-
ues. Sometimes the adopted strategies compare absolute



or relative values. As measure of distance the mean of the
absolute differences can be considered, or the Euclidean
distance (square root of difference squares) or maximum
distance (i.e. take the maximal difference component). It
is not clear how to weight the components, nor which dis-
tance formulation is more effective. Different researchers
employ different measures. More basically it is not clear
how to combine time and loudness distances for a com-
prehensive performance comparison. For instance as al-
ready discussed, the emphasis of a note can be obtained by
lengthening, dynamic accent, time shift, and timbre vari-
ation. Moreover, it is not clear how perception can be
taken into account, nor how to model subjective prefer-
ences. How are subjective and objective comparisons re-
lated? The availability of good and agreed methods for
performance comparison would be very welcome in per-
formance research. A subjective assessment of objective
comparison is needed. More research effort on this direc-
tion is advisable.

4.3 Models for understanding

We may distinguish some strategies in developing the
structure of the model and in finding its parameters. The
most prevalent ones are analysis-by-measurement and
analysis-by-synthesis. Recently some methods from artifi-
cial intelligence started being developed: machine learning
and case based reasoning.

4.3.1 Analysis by measurements

The first strategy, analysis-by-measurement, is based on
the analysis of deviations measured in recorded human per-
formances. The analysis aims at recognizing regularities
in the deviation patterns and to describe them by means
of a mathematical model, relating score to expressive val-
ues (Gabrielsson, 1999). The method consists in different
stages:

1. Selection of performances. The choice of good
and/or typical performances of the musical excerpt
to study is important. Often a rather small set of
carefully selected performances are used. While the
performer normally is left free to play according
to his own taste, for experimental purposes he may
sometimes be asked to play according to specific
instructions, e.g. to convey a specific emotion.

2. Measurement of the performance parameters of ev-
ery note. The physical variations of the performance
are several: duration, intensity, frequency, envelope,
note vibrato; which and how many variables to study
depends on the aims and working hypothesis, on the
technical possibility of the instrument and on the
considered instruments.

3. Reliability control and classification of perfor-
mances. It is necessary to verify the reliability and
consistence of the data obtained from the physical
variable measurement, classifying the performance
in different categories, with different characteristics,
taking into account the collected data.

4. Selection and analysis of the most relevant vari-
ables. This stage depends on the two previous
ones and it ends temporarily the analytic part of
the scheme to give space to the judgment by the
listeners, in the following stages.

5. Statistical analysis and development of mathemati-
cal interpretation model of the data. The analysis of
the selected variables is often carried out on different
time scale representations.

The most frequently used approaches are statistical mod-
els (Repp, 1992) and mathematical models (Todd, 1992,
1995). Sometimes multidimensional analysis is applied to
performance profiles (e.g. principal component analysis)
in order to extract independent pattern (Repp, 1992). Of-
ten the hypothesis, that deviations deriving from different
patterns or hierarchical levels can be separated and then
added, is implicitly assumed. This hypothesis helps the
modeling phase, but may be oversimplified.

Several methodologies of approximation of human per-
formances were developed using neural network tech-
niques (Bresin, 1998)or fuzzy logic approach (Bresin
et al., 1995a,b) or using a multiple regression analysis
algorithm (Ishikawa et al., 2000) or linear vector space
theory (Zanon and De Poli, 2003a,b). In these cases,
the researcher devises a parametric model and then esti-
mates the parameters that best approximate a set of given
performances.

In alternative to this method that analyses actual music
performances, some researchers are performing controlled
experiments in collecting and studying performances. The
idea is that by manipulating one parameter in a perfor-
mance (e.g. the instruction to play at a different tempo),
the measurements may reveal something of the underlying
mechanisms (Desain et al., 2001).

4.3.2 Analysis by synthesis

The analysis-by-synthesis paradigm (Gabrielsson, 1985)
takes into account the performance-perception and it starts
from the results of the previous stages continuing with the
following stages.

6. Synthesis of performances with systematic varia-
tions. At this stage the researcher produces different
versions of the piece in order to have performances
in which the physical variables to be studied (dura-
tion, intensity, etc.) systematically vary.

7. Judgment of synthesized versions, paying particu-
lar attention to the different experimental aspects
selected. Knowledge of relevant experimental vari-
ables and the designation of useful evaluations
scales are required.

8. Control of the reliability of the judgments followed
by classifications of the listeners. We need to use
adequate methods to control the listeners? reliabil-
ity and their judgments, possibly classifying them in
different classes.



9. Study of relation between performance and exper-
imental variables. At this point, it is possible to
observe the relations between performances with
manipulated physical variations and the selected
variables asking questions such as: are the listen-
ers sensitive to the manipulations made? If yes,
in which way? Are there general effects or inter-
actions among different variables? Which are the
most important variables? Can we eliminate some
of them?

10. Repetition of the procedure (steps 3-9) until the re-
sults converge. In relation to the results of stages 3-
9, the process should be continued in an interactive
manner until the relations of the selected variables of
the performance converge to the experimental vari-
ables.

The scheme here described can be modified and ex-
tended, but the main concept remains the following: the
analysis of the real performances produces hypothesis to
be tested through the systematic variations introduced in
the synthetic versions. With regard to such variations, it
should be noticed that factors must be modified one by
one keeping the rest constant. The best method to gen-
erate them should be, for instance, to produce simplified
versions where only one variable is modified, while im-
posing constant values to the others. The product will
sound rather different from a real performance where all
the physical variables change continuously. In order to
obtain data about the effect of the other variables and their
interaction, we must proceed with further experiments, in
a long series of working sessions.

This strategy derives models, which are described with a
collection of rules, using an analysis-by-synthesis method.
The most important is the KTH rule system (Friberg
et al., 1991, 1998, 2000; Sundberg et al., 1983, 1989,
1991). Other rules were developed by De Poli et al.
(1990). Dannenberg and Derenyi (1998) employed this
methodology for developing a performance model that
generates continuous control information to synthesize
trumpet performances from a symbolic score input. In the
KTH system, the rules describe quantitatively the devia-
tions to be applied to a musical score in order to produce
a more attractive and human-like performance than the
mechanical rendering that results from a literal playing of
the score. Every rule tries to predict (and to explain with
musical or psychoacoustic principles) some deviations that
a human performer is likely to insert. At first, rules are ob-
tained based on the indications of professional musicians,
using knowledge engineering paradigms. Then, the per-
formances, produced by applying the rules, are evaluated
by listeners, allowing further tuning and development of
the rules. The rules can be grouped according to the pur-
poses that they apparently have in music communication.
Differentiation rules appear to facilitate categorization
of pitch and duration, whereas grouping rules appear to
facilitate grouping of notes, both at micro and macro level.
As an example of such rules, let us consider the Duration
Contrast rule; it shortens and decreases the amplitude of
notes with durations between 30 and 600 ms, depending

on their duration according to a suitable function. The
value computed by the rule is then weighted by a quantity
parameter k.

4.3.3 Machine learning

In the traditional way of developing models, the re-
searchers normally makes some hypothesis on the per-
formance aspects they want to model and then he tries
to establish the empirical validity of the model by testing
it on real data or on synthetic performances. A different
approach, pursued by Widmer and coworkers (Widmer,
1995a,b, 1996, 2003; Widmer and Zanon, 2004), instead
tries to extract new and potentially interesting regularities
and performance principles from many performance ex-
amples, by using machine learning and data mining algo-
rithms. Aim of these methods is to search for and discover
complex dependencies in very large data sets, without any
preliminary hypothesis. The advantage is the possibility of
discover new (and possibly interesting) knowledge, avoid-
ing any musical expectation or assumption. Moreover,
these algorithms normally allow describing discoveries in
intelligible terms. The main criteria for acceptance of the
results are generality, accuracy, and simplicity.

4.3.4 Case based reasoning

An alternative approach, much closer to the observation-
imitation-experimentation process observed in humans, is
that of directly using the knowledge implicit in human per-
formance samples. Case-based reasoning (CBR) is based
on the idea of solving new problems by using (often with
some kind of adaptation) similar previously solved prob-
lems. Two basic mechanisms are used; retrieval of solved
problems (called cases) using suitable criteria, and adapta-
tion of solutions used in previous cases to the actual prob-
lem. The assumption is that similar problems have similar
solutions. CBR is appropriate for problems where many
examples of solved problems can be obtained and a large
part of the knowledge involved in the solution of problems
is tacit, difficult to verbalize and generalize. Moreover,
a new problem solution can be checked by the user and
then memorized. Thus, the system learns from experience.
An important achievement in this direction is the SaxEx
system for expressive performance of jazz ballads (Arcos
et al., 1998; Arcos and de Mantaras, 2001) and the Suzuki
and Tokunaga (1999) system. The success of this approach
greatly depends on the availability of a large amount of
well-distributed previously solved problems, not easy to
collect. These are not easy to collect.

4.3.5 Expression recognition models

The methods described in the previous sections aim at ex-
plaining how expression is conveyed by the performer and
how it is related to the musical structure. Recently this
accumulated research results started giving rise to mod-
els that aim to extract and recognize expression from a
performance. For example Dannenberg et al. (1997) de-
veloped a system to classify improvisational performance
style among different alternatives and Friberg et al. (2002)
recognizes the basic emotion in music performance. Zanon



addressed the question whether it is possible for a machine
to learn to identify famous performers (pianists) based on
their style of playing (Zanon and Widmer, 2003; Widmer
and Zanon, 2004)

4.4 Models for music production
4.4.1 Performance synthesis models

While the models above described were developed mainly
for analysis and understanding purpose, they also are often
used for synthesis purpose. Starting from expressiveness
models, several software systems for the computer auto-
matic generation of musical performances were developed.
Some examples are: POCO (Honing, 1990), the RUBATO
system, based on performance vector field (Mazzola and
Zahorka, 1994), Director Musices (Friberg et al., 2000) Su-
per Conductor (Clynes, 1998) and CaRo (Canazza et al.,
2000). Moreover, many sequencers now implement func-
tions, called humanizer, that add deviations to the score,
computed in a random way or according to specific crite-
ria. The typical scheme is represented in figure 3.
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Figure 3. Typical structure of a performance synthesis
model.

The model defined at Centro di Sonologia Computazionale
(CSC), University of Padova, was developed using the re-
sults of perceptual and sonological analyses made on
professional performances (Canazza et al., 2004). Dif-
ferent applications based on this model were developed.
Music performance is an activity that is well suited as a
target for multimodal concepts. Music is a nonverbal form
of communication that requires both logical precision
and intuitive expression. Our research in the domain of
creative arts has focused on musical mapping of gestural
input. Since the control space works at an abstract level, it
can be used as an interface between transmodal signals. In
particular, we developed an application allowing control
of the expressive content of a pre-recorded music perfor-
mance by means of dancers movement as captured by a
camera. Then expressive features extracted by dancers
movements are used as input for the abstract space. In the
entertainment area, we built the application Once upon the
time (released as an applet) for the enjoyment of fairy-
tales in a remote multimedia environment (Canazza et al.,
2000). IIn this software, an expressive identity can be
assigned to each character in the tale and to the different
multimedia objects of the virtual environment. Starting
from the storyboard of the tale, the different expressive in-
tentions are located in synthetic control spaces defined for
the specific contexts of the tale. The expressive content of

the audio is gradually modified with respect to the position
and movements of the mouse pointer, using the abstract
control space described above.

4.4.2 Discussion on synthesis models

The idea of automatic expressive music performance, es-
pecially when it is applied to the performance of classical
music, is questionable. We can remark that classical music
was not written for this purpose. Even if the models could
be very accurate (and they still are not), some very impor-
tant artistic aspects of this kind of music will be omitted.
When we listen to a recording of a classic music perfor-
mance, we are aware that it is just a reproduction of an
event and not an experience of the music as it was con-
ceived at its time. On the other hand, the possibility to
fully model and render the artistic creativity implied in the
performance is still to be demonstrated. For the moment,
at best, we can expect a reproduction of a specific perfor-
mance, without a real new creative contribution that would
make listening interesting. Or we can expect the render-
ing of some, hopefully relevant, aspects of a musically ac-
ceptable performance, but not sufficient for a full artistic
appreciation.

Performers are particularly sensitive to these aspects and
usually look at performance synthesis in a very suspi-
cious manner. An instinctive fear of a possible danger
for their competence and even their job can be guessed
to contribute, but the cultural motivations are definitely
true. On the other hand if we think of music applica-
tions where a real artistic value is not necessary (even if
useful as in many multimedia applications), and where
the alternative is a mechanic performance of the score
(as in many sequencers), automatic performance can be
acceptable. From this point of view such models can be
used for entertainment applications (Bresin and Friberg,
2001) or when it is not necessary to preserve the exact
artistic environment of the composition, as in popular
music. However, in many occasions a human performer is
not available and should be substituted in a certain way.
Performance models or processing of MIDI recorded per-
formances could be a solution. Notice that the quality of
performance processing is much higher when it is based
on performance models and knowledge.

Another important application of performance models,
even of classical music, is in education. The knowledge
embodied in performance models may help teachers to
increase their students’ awareness of certain performance
strategies and to better convey their teaching goals.

4.4.3 Models for multimedia application

Representing, modeling and processing expressive infor-
mation is useful not only for automatic music performance.
In fact a user can interact with the model during the per-
formance. We can thus consider interactive performance
models where expression is conveyed by a joint action of
the user and of the model. This paradigm of human ma-
chine interaction for expression communication is not only
fruitful in music applications, but it can be extended to
many other fields where non-verbal content can be very



relevant. We may distinguish two main classes of possible
interfaces for the human-machine communication:

e Graphic panel dedicated to the control, where the
control variables are directly displayed on the panel
and the user should learn how to use it.

e Multimodal, where the user interacts freely through
movements and non-verbal communication. The
task of the interface is to analyze and to identify
human intentions correctly.

Expressiveness control is a relevant aspect in multimodal
systems. The current state-of-the-art allows for a growing
number of applications, from advanced human-computer
interfaces in multimedia systems to new kinds of interac-
tive multimodal systems. An explosion of human interface
technologies involving ecological interface design, agents,
virtual immersive workspaces, decision support systems,
avatars, distributed architectures, and computer-supported
cooperative work, are appearing on the scene as means to
address these complex problems.

Multimodal interfaces have the potential to offer users
more expressive power and flexibility, as well as bet-
ter tools for controlling sophisticated visualization and
multimedia output capabilities. As these interfaces de-
velop, research will be needed on how to design complete
multimodal-multimedia systems that are capable of highly
robust functioning. To achieve this goal, a better expressive
content analysis and processing ability will be essential.
The computer science community is just beginning to
understand how to design innovative, well-integrated, and
robust multimodal systems. Most multimodal systems
remain bimodal, and recognition technologies related to
several human senses (e.g., haptics, smell, taste) are not
well represented in multimodal interfaces. This means
that it is very important to consider performance models
for non-verbal communication in a successful design of
multimodal systems.

4.5 Models for artistic creation

The situation is different when music is created expres-
sively, bearing in mind the use of technology. We are
in the era of the information society and artists are more
frequently using technology in their artworks. Since the
beginning of the last century, some musicians started to
think how to enlarge the sound palette by using unconven-
tional instruments. The availability of new electronic and
computer-generated sounds gave rise to a new kind of mu-
sic. Artists exploited and innovated greatly the methods
of producing and performing music. In the first period of
computer music, a lot of research effort was dedicated to
sound synthesis and modeling. New synthesis algorithms
were discovered, such as frequency modulation, and new
paradigms were developed for musical sound generation,
such as spectral and physical models. On the other side,
models for music representation and algorithmic composi-
tion were developed.

Less attention was being paid to the performance aspects.
The music was automatically generated from the score as

it was written by the composer, or generated by a compo-
sition program. The composer had to take into account all
the nuances often implicit in the score to communicate the
expressive content of the music. In this situation, the com-
poser must explicitly preview what the performer normally
handles. The composer is also a performer and needs to
formalize the performance process. A different approach,
to overcome the limitations of computer-generated music,
was taken by music for live electronics. Here the performer
interacts with technology on the stage, transforming the
sound produced by traditional or synthetic instruments in
real time.

In both cases, a central challenge is the control of the
sound synthesis or processing engines (systems, algo-
rithms, etc.). This problem is a typical performance topic
and it refers to the need of establishing and computing
the relations between musical and compositional aspects
and sound parameters according to the expressive aim of
the musician. The inputs are discrete events, as described
in the score or generated by computer, and continuous
signals, e.g., performer gestures. The most widespread
computer environment for realizing live electronic music
are the Max paradigm based languages Max/MSP, jmax,
and Pd (Puckette, 1991, 1997, 2002) and the Eyesweb
platform (Camurri et al., 2000, 2004). Many new input
devices for music expression have been proposed (see,
e.g., Paradiso (1997); Wanderley and Orio (2002)). The
inputs should be coordinated and merged to produce and
process sound events. In music technology, the concept
of mapping strategies which describe these relations is
of great importance. The conventional (and simplest)
approach refers to specific relations; for example, how to
convert pitch and loudness information into proper spectral
and micro-timing values of a synthetic note. Nevertheless,
the work strategies tend to include other possible choices
and sources of information as phrasing, musical character,
mood of the performer, and stylistic alternatives. All these
aspects are typical music performance issues, and suitable
music performance models are very desirable.

Figure 4 the typical situation of music performance with
digital instruments where the electronic instrument per-
former controls the sound synthesis with gestures and
suitable processes. A performance model lies between
the symbolic and the audio control level. The performer
receives audio feedback from the instrument as with tra-
ditional instruments. In live electronics, the scheme is
different (see Figure 5). Here the live electronics per-
former processes the sound produced by the instrument
performer, acting on his computer. In the live electronics
box, we still have score processes and gestures controlling
the sound processing devices via a performance model.
However, in this case the input is sounding music, already
performed. In a certain sense, we have a combined effect
of performances (e.g. deviations of deviations) that the
models should take into account. The performer receives
audio feedback from both the instrument and the sound
processing (Vidolin, 1997).
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Figure 4. Scheme of music performance with digital in-
struments where the electronic instrument performer con-
trols the sound synthesis with gestures and suitable pro-
cesses. A performance model lies between the symbolic
and the audio control level. The performer receives an au-
dio feedback from the instrument as with traditional instru-
ments.

5. CONCLUSIONS

IRecently music performance researchers are becoming
more aware of the need of a well-founded approach based
on strong scientific knowledge. This aim can be faced
from two complementary directions. One way is to start
from the knowledge gained in classical music performance
studies and formalized in performance models, then gen-
eralize their results and apply them to the performance of
new music creations. The other direction starts from the
practical knowledge of new music creators (often embod-
ied in their music performance systems) in order to extract
possible suggestions and proposals of new performance
models. From the joint effort of scientists and musicians
valid results can be expected, and real new tools can be
developed, not only inspired by problems and solutions of
past times.

It can be noticed that music performance is an interesting
topic for scientific investigation and for technology re-
search; it involves human non-verbal communication, has
artistic-creative finality, and requires strong cooperation
between art and science - technology. Probably still more
important is the fact that music is an immaterial art that has
a strong tradition of symbolic representation and abstract
thinking. This attitude may explain why musicians were
the most enthusiastic and successful in promoting and con-
tributing to the joint development of art and science since
the beginning of computer science. In other arts, this col-
laboration started much later and very often it is restricted
to the use of technology rather than a real contribution to a
joint development of knowledge and tools.
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Figure 5. Scheme of live electronic music performance.
The live electronics performer processes the sound pro-
duced by the instrument performer, acting on his com-
puter. The live electronics box, merging score processes
and gestures, controls the sound processing devices via a
performance model. The performer receives audio feed-
back from both the instrument and the sound processing.
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