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This article presents an elegant way of representing
control functions at an abstract level. It introduces
time functions that have multiple times as argu-
ments. In this way the generalized concept of a
time function can support absolute and relative
kinds of time behavior. Furthermore the possibili-
ties of composition and transformation of time
functions themselves is retained. The proposed so-
lution has three main advantages. First, for the
human user the language is transparent, and no
unforeseen interactions or side effects take place.
Second, it is independent of host language and com-
position system and can be used in a variety of
known environments (even in real-time systems).
Finally, the method is easy to adapt to run on paral-
lel architectures, where each note can be handled
by a different processor without the need for infor-
mation passing between them.

Background

In the early history of computer music composi-
tion (Loy 1988), the systems available either took

a monolithically continuous, signal-processing-
inspired approach (Mathews and Moore 1970; Berg
1979), or used a discrete, note- or event-based tech-
nique (Hiller, Leal, and Baker 1966; Koenig 1970).
Although some early work stressed the importance
of hybrid systems (Mathews 1969; Buxton et al.
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1978), this division became even more obvious once
the rich domain of hardware and software that be-
came available for MIDI lured designers into build-
ing composition systems close to this note-based
protocol.

MIDI allows for some rudimentary continuous
control (e.g., polyphonic aftertouch), but most pa-
rameter changes affect either all sounding notes or
all notes on a specific channel (Loy 1985). With the
advent of inexpensive signal processing hardware
that allows more natural continuous control over
parameters during each note’s evolution, the quest
for elegant constructs in composition languages
supporting both worlds is on again. Some research-
ers foresaw these developments and made attempts
to bridge the gap between these two worlds by stat-
ing the problems (Dannenberg et al. 1989; Huron
1990; Honing 1991), and proposing solutions to
them (Dannenberg, McAvinney, and Rubine 1986;
Anderson and Kuivila 1989).

The main problem that arises is how continuous
control functions should behave under specification
and transformation of the discrete structure. A no-
torious example is the vibrato problem—the vi-
brato on a note should not slow down if the note
itself is elongated, rather some extra vibrato cycles
should be added to the pitch envelope. A discrete
analogue of the vibrato problem is the drumroll,
which should extend when its duration is pro-
longed, with more drum beats added, but whose
rate should not slow down. A glissando, however,
specified by the same means of a continuous pitch
envelope, should be stretched along with the note
duration. An ornament (e.g., a mordent) is invariant
under transformation of the duration of the note.

Several solutions for these problems have been
stated, but all are unsatisfactory. We will describe a
few of the proposals below. In Canon (Dannenberg
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1989) a collection of transformations on a fixed set
of attributes is used, together with a way of com-
municating environment information to new trans-
formations.With these constructs he explicitly
solves the drum roll problem, though in a non-
trivial, almost procedural way. Dannenberg pro-
poses the term behavioral abstraction for the
ability to express these complex parametrized
behaviors.

Anderson and Kuivila (1989) propose a solution
based only on global time, prohibiting the composer
from thinking in terms of local constructs; most
real-time composition systems have, besides actual
time, no sense of time at all (see Desain and Hon-
ing in preparation). Solutions proposed for object-
oriented composition systems (e.g., Pope 1989,
1991) suffer from a declarative/procedural confu-
sion whereby transformations and musical objects
form no orthogonal sets; each new transformation
added has to take all object types and all existing
transformations into account. This inevitably leads
to the situation whereby some transformations can-
not be done twice or some combinations cannot be
done in an arbitrary order.

In this article we present an elegant and—once
understood—obvious way of representing control
functions at a more abstract level that simply
avoids all these problems and yields a transparent
specification of (discrete) musical structures with
continuous control over their parameters. To be
able to illustrate this approach, a simple framework
language for discrete musical objects and their or-
dering in time is given first, expressed in Common
Lisp (Steele 1990).

A Framework for Discrete Musical Objects

Let us start by assuming a basic note object, and a
basic rest object (called pause, to avoid clashing
with the Common Lisp primitive rest), with some
parameters specified by keywords:

(note :duration 2 :pitch 60
(pause :duration 1)

ramplitude 0.8)

The syntax is taken directly from Lisp, that is,
prefix notation with the function name before the
arguments, the whole expression being enclosed in
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parentheses. The arguments are specified as pairs
of keywords and values. The actual parameters al-
lowed are irrelevant for the present introduction—a
MIDI-based composition system might need differ-
ent parameters than a signal processing approach.
Furthermore, the discussion of the magnitude
scales for these parameters is ignored here, a simple
assumption of a duration scale in seconds, a pitch
scale in MIDI key numbers (with fractional part),
and a [0,1] scale for amplitude is assumed in the
examples. Even the semantics of such expressions—
whether they initiate processes, deliver data struc-
tures that represent musical objects (i.e., event-
lists), or are the actual procedures that output the
material directly—is immaterial here. One possible
implementation of this notation is given in the
Appendix.

We assume that unset parameters are defaulted
to reasonable values (duration 1 second, pitch 60
[middle-c], and amplitude 0.7), for ease of use in the
examples. It must be possible to specify the timing
of the basic musical objects, either by passing pa-
rameters for start time and duration directly (as is
used here for the duration parameter), by means of
parameters that place or move objects in time (Ab-
bott 1981; Dannenberg, McAvinney, and Rubine
1986; Balaban 1989), or by constructor functions
that build or play musical objects in a distinct time
order (Smoliar 1980; Dannenberg 1989). For the
sake of simplicity, we will use the last approach
with the Sequential and Parallel constructs that we
introduced in the LOCO composition language (De-
sain and Honing 1988), which were subsequently
elaborated as a basis for transformations (Desain
1990). These constructs mirror the sequential and
parallel execution primitives used in parallel lan-
guage design. S stands for a sequential ordering of
its components, the whole structure ending after
the last one, and P stands for a parallel structuring
ending at the end time of its longest component. As
an example, consider the musical object declared in
Fig. 1a. Its graphical piano-roll-like representation
is shown in Fig. 1b, where time is represented on the
x axis, pitch is represented on the y axis, and the
amplitude of a note is represented by its shading.

An extension of this approach allows for high-
level timing control for defining nonstandard musi-
cal objects such as grace notes. As these constructs
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Fig. 1. Example of a time
structured musical ob-
ject (a) and graphical nota-
tion of the same musical
object (b).

Fig. 2. Use of procedural
abstraction in defining a
compound musical ob-
ject (a) and graphical nota-
tion of the same musical

object (b).

(s (p (note :duration 2 :pitch 62 :amplitude 1.0)
(note :duration 4 :pitch 65 :amplitude 0.7))
(note :duration 5 :pitch 58 :amplitude 0.3)))

Fig. 1b time ->

(defun major-chord (duration key)
(p (note :duration duration :pitch key)
(note :duration duration :pitch (+ key 4)))
(note :duration duration :pitch (+ key 7))))

(s (major-chord 2 57) (major-chord 5 58) (major-chord 2 57))

time ->

Desain and Honing
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are not essential for the present argument, we refer
to Desain and Honing (1988) for more details. For
naming complex musical objects, forming param-
eterized families of objects, and defining musical
transformations, we will use the standard proce-
dural abstraction (function definition) facilities of
the host language (Lisp). An example of a com-
pound musical object built by those means is
shown in Lisp source and graphically in Fig. 2.

Next we introduce a basic transformation on the
timing of fully constructed musical objects that we
can use to demonstrate the behavior of the time
functions when the duration of the object to which
they are linked is changed. The stretch transforma-
tion multiplies each duration of the enclosed ob-
jects by a given factor.

(stretch (note :duration 1 :pitch 60
— (note :duration 2 :pitch 60

ramplitude 1) 2)
ramplitude 1)

These preliminary constructs constitute a world
rich enough to introduce continuous time functions
and their problems, but the same solution can be
used in most present composition systems, how-
ever different their notion of musical objects and
collections thereof, and whatever way the time re-
lations between them are specified.

Continuous Control
The Problem

A natural thought, when bored with note-based dis-
crete systems, is to pass each note a continuously
variable function of time as parameter, for example,
for pitch or amplitude, instead of a constant value.
The functions passed are functions of the actual
time, and elegant ways to build and transform them
can be given. Often, though, these functions have
been regarded as control signals (resembling audio
signals) even up to the point where a list of data
points, interpreted at a fixed (low) sample rate has
been called a “function” (e.g., Schottstaedt 1983;
Puckette 1988), obscuring the highly abstract pow-
erful possibilities of functions in their mathemati-
cal sense (exceptions are Rodet and Cointe 1984;
Dannenberg, McAvinney, and Rubine 1986. Ander-
son and Kuivila [1989] propose an alternative). But

20

even when the full power of function specification
is used, time functions are considered to be func-
tions of actual time. This complicates the coupling
of these functions to discrete objects and gave rise
to the problem described above—the notorious
vibrato problem and its discrete counterpart, the
drumroll problem.

A related concern is the use of a relative or
absolute start point for the time base used. Com-
posers sometimes prefer the use of an absolute time
scale because of the (false) impression of total con-
trol. However, it implies that an envelope be rede-
fined each time it is used at another absolute point
in time. This can be avoided simply by using a time
base relative to the object under construction. This,
of course, does not mean that the notion of abso-
lute time control can be ignored. It is indispensable
when time relations with events outside the mu-
sical piece (e.g., midnight church bells) are to be
taken into account, or, as is the case more often,
when relations between different and independent
musical objects have to be maintained (e.g., syn-
chronized vibrato between different voices).

A Solution

The solution we propose is to make each control
function a function of more parameters, each pa-
rameter reflecting a different aspect of time. As an
example, we will develop this notion for time func-
tions of three parameters, the absolute start time of
the discrete musical object it is controlling, the
absolute time duration of this musical object, and a
relative progress, expressed as how much time has
elapsed since the start time, relative to the duration
(a number in the range [0,1]). Other choices are, of
course, possible here (e.g., start time, end time, and
actual time). All these parameters will be passed
their appropriate values automatically by the inter-
pretative system. With this definition of a time
function, the user can now choose to use some time
parameters and ignore others to make time func-
tions that behave differently when used for musical
objects with different duration or start time.

As a first example, let us define an elastic ramp
control, independent of an absolute start time, tak-
ing the full duration of the musical object to reach
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Fig. 3. Definition of aramp  glissandi that extend
time function and a musi- when stretched in time
cal object using it (a) and given (b).

(defun ramp (from to)
#' (lambda (start duration progress)

(defun glissando-example ()
(s (note :duration 1 :pitch 58)

(s (pause :duration .5)

(s (glissando-example)

(+ from (* progress (- to from)))))

(p (note :duration 2.5 :pitch (ramp 64 61))
(note :duration 2 :pitch (ramp 61 60))))))

(stretch (glissando-example) 2))

0
Fig. 3b

its final value. We will use it to control the pitch of
some notes, creating glissandi. The function ramp
produces a linear time function of the three time
parameters mentioned above. It ignores the abso-
lute start time and duration parameters, depending
only on the progress of the evolving note (a number
between 0 and 1) to calculate its value. Figure 3
shows how the same ramp construct is used for
notes of different duration—yielding an appropriate
glissando—and how the musical idea is kept intact
under a stretch transformation.

Now let us construct, with the same means, a vi-
brato function, parameterized by the fundamental
pitch it is to be applied to, and the frequency and

time ->

depth of the vibrato itself. It only depends on the
actual time elapsed during the musical object—the
product of duration and progress. Now the applica-
tion of the vibrato function to notes of different du-
ration will not alter the vibrato rate, nor will the
stretch transformation applied to the compound
musical object (see Fig. 4b).

If we make a similar sinusoidal glissando func-
tion, expressed in terms of relative time (progress),
a stretch of the musical object will slow down the
rate (see Fig. 4c).

Absolute time can also be used to make time
functions that are not influenced at all when they
are applied to musical objects with a different dura-
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Fig. 4. Definition of musi- sandi that extend when

cal objects using vibrati, stretched in time (c); and
glissandi, and orna- sinusoidal ornament not
ments (a); vibrati that affected when stretched in

elongate when stretched in  time (d).
time (b); sinusoidal glis-

(defun sine-oscillator (offset frequency depth)
#' (lambda (start duration progress)
(+ offset
(* depth
(sin (* 2 pi duration progress frequency))))))

(defun sine-glissando (key depth)
#' (lambda (start duration progress)
(+ key
(* depth (sin (* 2 pi progress))))))

(defun sine-ornament (key count)
#' (lambda (start duration progress
&aux (relative-time (* duration progress)))
(+ key
(if (< relative-time count)
(sin (* 2 pi relative-time))
0))))

(defun vibrato-example ()
(s (note :duration 1 :pitch 58)
(p (note :duration 2.5 :pitch (sine-oscillator 64 1 .5))
(s (pause :duration .5)
(note :duration 2 :pitch (sine-oscillator 61 1 1))))))

(defun glissando-example ()
(s (note :duration 1 :pitch 58)
(p (note :duration 2.5 :pitch (sine-glissando 64 .5))
(s (pause :duration .5)
(note :duration 2 :pitch (sine-glissando 61 1))))))

(defun ornament-example ()
(s (note :duration 1 :pitch 58)
(p (note :duration 2.5 :pitch (sine-ornament 64 .5))
(s (pause :duration .5)
(note :duration 2 :pitch (sine-ornament 61 1))))))

(s (vibrato-example) (stretch (vibrato-example) 2)) ; Figure 4b
(s (glissando-example) (stretch (glissando-example) 2)) ; Figure 4c
(s (ornament-example) (stretch (ornament-example) 2)) ; Figure 4d

Fig. 4a
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pitch ->

time ->

time ->
Fig. 4d
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Fig. 5. Surfaces represent-
ing vibrato (a), glissando
(b), and ornament (cj time
functions as a function of
duration and relative time.

,ogress ->

3 *
duraﬁ()“ P

i
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Fig. 6. Example of a musi-
cal object using a synchro-
nized vibrato (a) and
graphical notation of the
same musical object (b).

#' (lambda (start duration progress)
(+ offset
(* depth
(sin (* 2 pi (+ phase

(defun synchronized-vibrato-example ()
(s (note :duration 1 :pitch 58)

(s (pause :duration .5)

(s (synchronized-vibrato-example)

(defun sync-oscillator (offset frequency depth &optional (phase 0))

(* start frequency)
(* duration progress frequency))))))))

(p (note :duration 2.5 :pitch (sync-oscillator 64 1 .5))

(note :duration 2 :pitch (sync-oscillator 61 1 1))))))

(stretch (synchronized-vibrato-example) 2))

Fig. 6b

tion. An ornament could have such character; a
sinusoidal ornament will keep its absolute timing
when stretched (see Fig. 4d).

The abstract vibrato, glissando, and ornament
time functions can be depicted nicely in a three-
dimensional surface plot, as is shown in Fig. 5. The
relative time (duration * progress) and the duration
are used as dependent variables here. For any note
duration, the actual time function used will be a
cross-section of these surfaces.

7 8 9 10
time ->

Using the absolute start-time parameter enables
tull control over timing with respect to a global
clock. This can be used to specify the phase of a vi-
brato among parallel notes, such that they can be
synchronized, as is shown in Fig. 6 (compare with
Fig. 4b).

This completes the examples of the use of gener-
alized time functions with multiple parameters as
control functions for individual basic objects. It
shows how problems of synchronization and time
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Fig. 7. Example of applying
the same local envelope
function to the individual
note objects (a) and graphi-
cal notation of the musical
object (b).

(defun envelope-example ()
(let ((envelope (ramp 0 1)))

(s (pause

:duration .5)

(s (envelope-example)

(s (note :duration 1 :pitch 58 :amplitude envelope)
(p (note :duration 2.5 :pitch 64 :amplitude envelope)
(note :duration 2 :pitch 61 :amplitude envelope))))))

(stretch (envelope-example) 2))

Fig. 7a
A
5 65(
S 64l
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Fig. 7b

modification are elegantly avoided by lifting the
concept of a time function to a more abstract level.
Of course the control functions used here are rudi-
mentary in their musical value—much more elabo-
rate envelopes are needed—but they can all be
based on the same idea, and we show below how
simple time functions can be combined into com-
plex ones, but first we want to tackle the problem
of time functions extending over a collection of sev-
eral musical objects.

Control Over Compound Objects
In composition the use of time-dependent control

specified over a collection of musical objects is
abundant. The simplest example specifies the same

26

7 8 9 10
time ->

control information to be applied to each basic ob-
ject. Naming a control function (as done with the
let local binding construct of Common Lisp) is then
natural (see Fig. 7).

A different method has to be used to pass time
functions evolving over a compound musical ob-
ject, to each basic musical object. An example of
such a construct is a crescendo from a certain loud-
ness level to another, starting at the start of the
musical structure it is applied to, and extending
over its total duration. We need to introduce a new
construct in the language to enable the passing of
information from collections of musical objects to
such envelopes. It follows the same syntax as the
let construct but modifies the time functions bound
with it such that they will behave appropriately. In

Computer Music Journal
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Fig. 8. Example of applying
a global crescendo func-
tion to the individual note
objects (a) and graphical
notation of the musical
object (b).

(defun crescendo-example ()

(s (pause :duration .5)

(s (crescendo-example)

(let-time-fun-over-compound ((crescendo (ramp 0 1)))
(s (note :duration 1 :pitch 58 :amplitude crescendo)
(p (note :duration 2.5 :pitch 64 :amplitude crescendo)
(note :duration 2 :pitch 61 :amplitude crescendo))))))

(stretch (crescendo-example) 2))

Fig. 8a

65t
64|
63}
62t
617

pitch ->

60
59T

Lot x R
58 :'g"‘ L3 &§2

571

Fig. 8 the definition of a crescendo is shown using
the same ramp function and the same musical
structure as used in Fig. 7.

Time Function Composition

Building a comprehensive set of musically useful
time functions can best be done by supplying some
simple, basic time functions and some ways of
building complex ones by transforming and com-

time ->

bining them. The function time-fun-compose is one
of the higher-order functions that can be imagined
that supports this. It generalizes any operation to
the corresponding combination of the results of
time functions. The example in Fig. 9 shows both
an additive combination of an oscillator and a ramp
time function for pitch, and one using a multiplica-
tive combination for the amplitude parameter. An
object-oriented approach here, packaging time func-
tions in their own class and overloading the stan-

Desain and Honing 27

This content downloaded from
128.32.10.230 on Sun, 28 Sep 2025 21:38:47 UTC
All use subject to https://about.jstor.org/terms



Fig. 9. Example of combin-
ing time functions (a) and
graphical notation of the
musical object (b).

(defun compose-example ()
(note :duration 7

(s (compose-example)

:pitch (time-fun-compose #'+ (oscillator 58 1 1)
:amplitude (time-fun-compose #'%*
(oscillator .5 1 .5)
(ramp 1 0))))

(stretch (compose-example)

(ramp 5 0))

.5))

Fig. 9a

651
64
63
62
61

pitch ->

60| ) » »
591 >3
58
57}

0 1 2 3 4 5 6

Fig. 9b

dard arithmetic operations for them, would, of
course, simplify the syntax.

Another useful combination is the concatenation
of two time functions, with an extra argument ex-
pressing the proportion of the duration handled by
the first, implying the remaining time for the sec-
ond. In Fig. 10 the concatenation of two ramp enve-
lopes is shown, one used locally for the pitch, the
other used globally for the amplitude parameters.

An ever richer world of possibilities opens up
when time functions accept time functions as argu-
ments; their parameters may then change over time
as well. In the example we use a sine oscillator that
changes its frequency over time, controlled by a
ramp time function. A new definition of an oscilla-

28

tor that takes functional arguments can easily be
constructed. In Fig. 11a such a sine oscillator time
function is defined (it uses the function time-funcall,
and the function make-sine that supplies a sine
function that remembers its state over time).

It has to be stressed here again that these combi-
nations of time functions preserve—in a compound
way—the different ways in which their constituent
components deal with time. For instance, the com-
position of a glissando and a vibrato, as in Fig. 9b,
can still be stretched in time consistently; the vi-
brato will add cycles at the same rate and the glis-
sando will slow down. This composibility of behav-
ior is an important characteristic of this solution.

Computer Music Journal
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Fig. 10. Example of con-
catenating time functions
(a) and concatenations of
a crescendo and a decre-
scendo, and upward and
downward glissandi (b)

(defun crescendo-decrescendo-example ()
(let-time-funs-over-compound
((cresc-decresc (time-fun-concatenate (ramp O 1) (ramp 1 0) .2)))
(let ((glissando
(time-fun-concatenate (ramp 58 59) (ramp 59 58) .8)))
(s (note :duration 1 :pitch glissando :amplitude cresc-decresc)
(p (note :duration 2.5 :pitch 64 :amplitude cresc-decresc)
(s (pause :duration .5)
(note :duration 2
:pitch 61
:amplitude cresc-decresc)))))))

(s (crescendo-decrescendo-example)
(stretch (crescendo-decrescendo-example) 2))

Fig. 10a
A
§ 65}
‘Bl

647t

63+t

62}

61}

60}

591

58 K

S NS
57t
0 1 2 3 4 5 6 7 8 9 10
time ->
Fig. 10b
Specification by Means of Transformation Below a set of transformations and their equiva-
lents are shown.
The reader might now wonder how transformations (st retcn
of a complex musical object can be taken care of. (amplitude
Because of the abstractions chosen in this design, :i ari:°:ez,) )(tra“smse (note) 2))
this almost comes for free (in contradiction to other 2,
systems; see the closing remarks in [Dannenberg =
A . (let-time-funs-over-compound ((envelope (ramp 1 0)))

1989] and [Rahn 1990]) TraHSformatl.ons ar? just (s (note :duration 2 pitch 60 :amplitude envelope)
another way to specify complex musical objects. (note :duration 2 pitch 62 :amplitude envelope)))
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Fig. 11. Example using
an oscillator taking func-
tional arguments (a) and
graphical notation of the
musical object (b).

(defun sine-osc (frequency)
(let ((sine (make-sine)))
#' (lambda (start duration progress
&aux (time (+ start (* duration progress))))
(funcall sine time
(time-funcall frequency start duration progress)))))

(defun new-oscillator (offset frequency depth)
(time-fun-compose #'+ offset
(time-fun-compose #'* depth
(sine-osc frequency))))

(defun new-vibrato-example ()
(s (note :duration 1 :pitch 58)
(p (note :duration 2.5
:pitch (new-oscillator 64 2 (ramp 0 1)))
(s (pause :duration .5)
(note :duration 2
:pitch (new-oscillator 61 (ramp 0 1) 1)
:amplitude (new-oscillator .5 (ramp 0 1) .5))))))

(s (new-vibrato-example) (stretch (new-vibrato-example) 2))

Fig. 11a

time ->

Fig. 11b
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Fig. 12. Examples of attri-
bute transformations (a)
and graphical notation of
the musical object (b).

(defun transpose (object interval)

(defun amplitude (object amplitude)

(s (transpose (new-vibrato-example) -1)

(ramp 1 0)))

(attribute-transform :pitch interval #'+ object))

(attribute-transform :amplitude amplitude #'* object))

(amplitude (stretch (new-vibrato-example) 2)

Fig. 12a

65

pitch ->

641
63
621
617t

60}
59T
58T

0 1 2 3 4 5
Fig. 12b

A free mixture of direct specification and trans-
formation can, of course, be used. In Fig. 12 two ex-
amples of simple transformations are given. The
attribute-transform function supports these kinds
of transformations on the attributes of the notes. It
takes, besides the musical object applied to, a key-
word identifying an attribute, a time function or
constant, and an operator used in combining the re-
sults of the time function with the time functions
or constants found in the musical object.

Microworld

To enable the reader to test and experiment with
these ideas, a simple implementation of a language
with these capabilities is given the Appendix; the

7 8 9 10
time ->

full implementation is part of our COCO composi-
tion system. The basic and compound musical ob-
jects are defined procedurally. Because their context
li.e., their start time) is still unknown at the time of
their declaration, they will deliver functions (called
event-list generators) of this context that will, when
given a start time and a scale factor, return an event-
list together with its end time.

A draw procedure is available to transform such
musical objects into the graphical representation
that was used in drawing the figures. Low-level
draw routines for the user’s window system or plot-
ter, implementing the draw-air-brush primitive still
have to be supplied. The incorporation of a play
primitive to sort event-lists and send data to a MIDI
driver is left to the reader as an exercise. Note that
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this is a nontrivial task since some technical tricks
(e.g., allocating notes to different MIDI channels)
must be used to allow continuous control of the in-
dividual note parameters.

Extensions
Articulation

Some parameters are not continuously variable by
nature (e.g the articulation of a note—the propor-
tion of its duration that it is actually sounding), but
they can be modeled well by using continuously
variable time functions extending over compound
musical objects, sampled once automatically by the
system at the objects’ start time (as in [Dannenberg
1989]). It is even possible to supply this information
as an extra argument to all time functions (at the
risk of becoming circular, articulation time func-
tions themselves should not be allowed to use the
articulation parameter). This elegantly solves the
specification of, for example, different attack, de-
cay, and release sections of envelope functions in
terms of an articulation factor.

Real-Time Control

There is no reason why this approach could not be
used in real-time control. If it is possible in the host
system to specify the start of a musical object (e.g.,
a note-on command) without its end, then the set
of parameters passed to time functions has to be
adapted (e.g., to absolute start time, and absolute
time elapsed after the start). Time functions can
naturally depend on incoming (real-time) parame-
ters if their evaluation is postponed until the last
possible moment. Note that in that case time func-
tions are not strictly functional any more, reading
control signals from input ports.

Rubato Functions and Time Maps

It might be possible to add flexibility to the com-
mon rubato functions and nested time maps used
for composition systems (Jaffe 1985; Desain and
Honing 1992) by supplying them with multiple
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time arguments as well. To avoid circularity a divi-

sion in score and performance time has to be made.

This could then be a basis for meaningful specifica-
tions and transformations of expressive timing. The
possibilities have yet to be investigated.

Advantages of “Generalized Time Functions”

Generalized time functions have three main advan-
tages. First, for the human user the language is
transparent, and no unforeseen interactions or side
effects take place. Second, musical objects, time
functions, transformations of musical objects are
orthogonal sets; they serve as a solid and extensible
basis for further design, independent of host lan-
guage or composition system. Finally, from the
hardware perspective this approach has the distinct
advantage of being easy to adapt to run on parallel
architectures; each note can be handled by a differ-
ent processor, without the need for information pass-
ing between them. Note-based parallelism seems
the most promising distribution of labor for most
parallel architectures.
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Appendix

;ii TIME FUNCTIONS MICROWORLD

;ii (C)1991, Peter Desain & Henkjan Honing
iii Part of the COCO composition system
i3+ In Common Lisp (uses loop macro)

;;i basic musical objects

(defun note (&key (duration 1) (pitch 60) (amplitude 0.7))
"Return an event-list-generator of a note"
#' (lambda (start factor &aux (stretched-dur (* duration factor)))
(list (list (list :start start
:duration stretched-dur
:pitch pitch
:amplitude amplitude))
(+ start stretched-dur))))

(defun pause (&key (duration 1)
"Return an event-list-generator of a pause"
#' (lambda (start factor &aux (stretched-dur (* duration factor)))
(list nil (+ start stretched-dur))))

iii compound musical objects (time structuring)
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(defun s (&rest elements)
"Return an event-list-generator of a sequential compound object"
#' (lambda (start factor)
(loop for element in elements

as start-time = start then end
as (events end) = (funcall element start-time factor)
append events into result
finally (return (list result end)))))

(defun p (&rest elements)
"Return an event-list-generator of a parallel cdémpound object"
#' (lambda (start factor
(loop for element in elements

as (events end) = (funcall element start factor)
append events into result
maximize end into end-time
finally (return (list result end-time)))))

ji; time transformation

(defun stretch (object amount)
"Return an event-list-generator of a stretched object"”
#'(lambda (start factor) (funcall object start (* amount factor))))

;i attribute transformation

(define-modify-macro modify-attribute (operator time-fun)
modify-time-fun)

(defun modify-time-fun (old-time-fun operator new-time-fun)
"Return a composition of two time-functions given an operator™
(time-fun-compose operator new-time-fun old-time-fun)

(defun attribute-transform (keyword time-fun operator object)
"Return an event-list-generator of a transformed musical object"
#' (lambda (start factor)

(destructuring-bind (events end)
(let ((global-time-fun
(global-to-local time-fun start (- end start)))
(events-copy (copy-list events)))
(loop for event in events-copy

do (modify-attribute (getf event keyword)
operator
global-time-fun)

finally (return (list events-copy end)))))))

(funcall object start factor)

;i; use of time functions over compound musical objects

(defmacro make-local-time-fun (time-fun start duration)
"Return code for a time-function of unknown start and duration”
“#'(lambda (local-start local-duration local-progress)
(funcall (global-to-local ,time-fun ,start ,duration)
local-start local-duration local-progress)))

(defmacro let-time-funs-over-compound (bindings expression)
"Establish bindings of time-functions over compound object"
(reduce #'(lambda (&rest list)

(cons 'let-time-fun-over-compound list))
bindings :initial-value expression :from-end t))

(defmacro let-time-fun-over-compound ((var fun) expression)
"Establish binding of time-function over compound object"”
(let ((start (gensym)) (dur (gensym))
" (let* (,start ,dur (,var (make-local-time-fun ,fun ,start ,dur)))
#' (lambda (start factor)
(destructuring-bind (events end)
(funcall ,expression start factor)
(setf ,start start ,dur (- end start))
(list events end))))))
;i time function utilities

(defun time-funcall (time-fun-or-constant start duration progress)
"Return a constant or apply time-function to its arguments"
(if (functionp time-fun-or-constant)
(funcall time-fun-or-constant start duration progress)
time-fun-or-constant))

(defun time-fun-compose (operator &rest time-funs)

"Return a time-function that applies operator to results of time-funs"

#' (lambda (start duration progress)
(apply operator
(mapcar #'(lambda (time-fun)

(time-funcall time-fun start duration progress))

time-funs))))

(defun time-fun-concatenate (time-fun-1 time-fun-2 proportion)
"Return a concatenation of two time-functions given a proportion"
#' (lambda (start duration progress)

(if (<= progress proportion)

(time-funcall time-fun-1
start
(* duration proportion)
(/ progress proportion))

(time-funcall time-fun-2
(+ start (* duration proportion))
(* duration (- 1 proportion))
(/ (- progress proportion) (- 1 proportion))))))

(defun global-to-local (time-fun start duration)
"Return a global time-function that can be referenced locally"
#'(lambda (local-start local-duration local-progress)
(let* ((time (+ local-start (* local-duration local-progress)))
(progress (/ (- time start) duration)))
(time-funcall time-fun start duration progress))))

iii sine function used in figure 11

(defun make-sine ()
"Return sine function with state"
(let ((phase 0) old-time)
#' (lambda (time frequency)
(when old-time
(incf phase (* 2 pi (- time old-time) frequency)))

(setf old-time time)
(sin phase))))

i;i graphical score output

(defun draw (musical-object &key (resolution 0.1))
"Draw a musical object"
(loop for note in (first (funcall musical-object 0 1))
do (apply #'draw-note resolution note)))

(defun draw-note (resolution &key start duration pitch amplitude)
"Draw a note using the time-function or constant of the attributes"

(loop
for count from 0 to (floor (/ duration resolution)
as time = (+ start (* count resolution))

as old-pitch = (time-funcall pitch start duration 0)
then new-pitch
as old-amplitude = (time-funcall amplitude start duration 0)
then new-amplitude
as old-time start then time
as progress (/ (- time start) duration)
as new-pitch = (time-funcall pitch start duration progress)
as new-amplitude = (time-funcall amplitude start duration progress)
do (format t "~%~2,1,5%$~2,1,7$~2,1,7$" time new-pitch new-amplitude)
do (draw-air-brush old-time old-pitch
time new-pitch
old-amplitude new-amplitude)))

(defun draw-air-brush (x1 yl x2 y2 shadel shade2)

ii to be provided by the user, adapted to the specific graphical system

;i draws a parallelogram with vertical left and righthand sides
ii (x1, yl) is mid left, shadel, (x2, y2) is mid right, shade2
)

ii; examples of use (draws pictures as in figures 4b, 4c and 4d)

(defun oscillator (offset frequency depth)
#' (lambda (start duration progress)
(+ offset
(* depth
(sin (* 2 pi duration progress frequency))))))

(defun sine-glissando (key depth)
#' (lambda (start duration progress)
(+ key
(* depth (sin (* 2 pi progress))))))

(defun sine-ornament (key count)
#' (lambda (start duration progress
&aux (relative-time (* duration progress)))
(+ key
(if (< relative-time count)
(sin (* 2 pi relative-time)
0))))

(defun vibrato-example ()
(s (note :duration 1 :pitch 58)
(p (s (pause :duration .5)
(note :duration 2 :pitch (oscillator 61 1 1)))
(note :duration 2.5 :pitch (oscillator 64 1 .5)))))

(defun glissando-example ()
(s (note :duration 1 :pitch 58)
(p (s (pause :duration .5)
(note :duration 2 :pitch (sine-glissando 61 1)))
(note :duration 2.5 :pitch (sine-glissando 64 .5)))))

(defun ornament-example ()
(s (note :duration 1 :pitch 58
(p (s (pause :duration .5)
(note :duration 2 :pitch (sine-ornament 61 1)))
(note :duration 2.5 :pitch (sine-ornament 64 .5)))))

; figure 4b:

; (draw (s (vibrato-example) (stretch (vibrato-example) 2)))

; figure 4c:

i (draw (s (glissando-example) (stretch (glissando-example) 2)))

; figure 4d:

; (draw (s (ornament-example) (stretch (ornament-example) 2)))
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