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 Time Functions Function
 Best as Functions of
 Multiple Times

 This article presents an elegant way of representing
 control functions at an abstract level. It introduces

 time functions that have multiple times as argu-
 ments. In this way the generalized concept of a
 time function can support absolute and relative
 kinds of time behavior. Furthermore the possibili-
 ties of composition and transformation of time
 functions themselves is retained. The proposed so-
 lution has three main advantages. First, for the
 human user the language is transparent, and no
 unforeseen interactions or side effects take place.
 Second, it is independent of host language and com-
 position system and can be used in a variety of
 known environments (even in real-time systems).
 Finally, the method is easy to adapt to run on paral-
 lel architectures, where each note can be handled
 by a different processor without the need for infor-
 mation passing between them.

 Background

 In the early history of computer music composi-
 tion (Loy 1988), the systems available either took
 a monolithically continuous, signal-processing-
 inspired approach (Mathews and Moore 1970; Berg
 1979), or used a discrete, note- or event-based tech-
 nique (Hiller, Leal, and Baker 1966; Koenig 1970).
 Although some early work stressed the importance
 of hybrid systems (Mathews 1969; Buxton et al.

 1978), this division became even more obvious once
 the rich domain of hardware and software that be-

 came available for MIDI lured designers into build-
 ing composition systems close to this note-based
 protocol.

 MIDI allows for some rudimentary continuous
 control (e.g., polyphonic aftertouch), but most pa-
 rameter changes affect either all sounding notes or
 all notes on a specific channel (Loy 1985). With the
 advent of inexpensive signal processing hardware
 that allows more natural continuous control over

 parameters during each note's evolution, the quest
 for elegant constructs in composition languages
 supporting both worlds is on again. Some research-
 ers foresaw these developments and made attempts
 to bridge the gap between these two worlds by stat-
 ing the problems (Dannenberg et al. 1989; Huron
 1990; Honing 1991), and proposing solutions to
 them (Dannenberg, McAvinney, and Rubine 1986;
 Anderson and Kuivila 1989).

 The main problem that arises is how continuous
 control functions should behave under specification
 and transformation of the discrete structure. A no-

 torious example is the vibrato problem-the vi-
 brato on a note should not slow down if the note

 itself is elongated, rather some extra vibrato cycles
 should be added to the pitch envelope. A discrete
 analogue of the vibrato problem is the drumroll,
 which should extend when its duration is pro-
 longed, with more drum beats added, but whose
 rate should not slow down. A glissando, however,
 specified by the same means of a continuous pitch
 envelope, should be stretched along with the note
 duration. An ornament (e.g., a mordent) is invariant
 under transformation of the duration of the note.

 Several solutions for these problems have been
 stated, but all are unsatisfactory. We will describe a
 few of the proposals below. In Canon (Dannenberg
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 1989) a collection of transformations on a fixed set
 of attributes is used, together with a way of com-
 municating environment information to new trans-
 formations.With these constructs he explicitly
 solves the drum roll problem, though in a non-
 trivial, almost procedural way. Dannenberg pro-
 poses the term behavioral abstraction for the
 ability to express these complex parametrized
 behaviors.

 Anderson and Kuivila (1989) propose a solution
 based only on global time, prohibiting the composer
 from thinking in terms of local constructs; most
 real-time composition systems have, besides actual
 time, no sense of time at all (see Desain and Hon-
 ing in preparation). Solutions proposed for object-
 oriented composition systems (e.g., Pope 1989,
 1991) suffer from a declarative/procedural confu-
 sion whereby transformations and musical objects
 form no orthogonal sets; each new transformation
 added has to take all object types and all existing
 transformations into account. This inevitably leads
 to the situation whereby some transformations can-
 not be done twice or some combinations cannot be
 done in an arbitrary order.

 In this article we present an elegant and-once
 understood-obvious way of representing control
 functions at a more abstract level that simply
 avoids all these problems and yields a transparent
 specification of (discrete) musical structures with
 continuous control over their parameters. To be
 able to illustrate this approach, a simple framework
 language for discrete musical objects and their or-
 dering in time is given first, expressed in Common
 Lisp (Steele 1990).

 A Framework for Discrete Musical Objects

 Let us start by assuming a basic note object, and a
 basic rest object (called pause, to avoid clashing
 with the Common Lisp primitive rest), with some
 parameters specified by keywords:

 (note :duration 2 :pitch 60 :amplitude 0.8)
 (pause :duration 1)

 The syntax is taken directly from Lisp, that is,
 prefix notation with the function name before the
 arguments, the whole expression being enclosed in

 parentheses. The arguments are specified as pairs
 of keywords and values. The actual parameters al-
 lowed are irrelevant for the present introduction-a
 MIDI-based composition system might need differ-
 ent parameters than a signal processing approach.
 Furthermore, the discussion of the magnitude
 scales for these parameters is ignored here, a simple
 assumption of a duration scale in seconds, a pitch
 scale in MIDI key numbers (with fractional part),
 and a [0,1] scale for amplitude is assumed in the
 examples. Even the semantics of such expressions-
 whether they initiate processes, deliver data struc-
 tures that represent musical objects (i.e., event-
 lists), or are the actual procedures that output the
 material directly-is immaterial here. One possible
 implementation of this notation is given in the
 Appendix.

 We assume that unset parameters are defaulted
 to reasonable values (duration 1 second, pitch 60
 [middle-c], and amplitude 0.7), for ease of use in the
 examples. It must be possible to specify the timing
 of the basic musical objects, either by passing pa-
 rameters for start time and duration directly (as is
 used here for the duration parameter), by means of
 parameters that place or move objects in time (Ab-
 bott 1981; Dannenberg, McAvinney, and Rubine
 1986; Balaban 1989), or by constructor functions
 that build or play musical objects in a distinct time
 order (Smoliar 1980; Dannenberg 1989). For the
 sake of simplicity, we will use the last approach
 with the Sequential and Parallel constructs that we
 introduced in the LOCO composition language (De-
 sain and Honing 1988), which were subsequently
 elaborated as a basis for transformations (Desain
 1990). These constructs mirror the sequential and
 parallel execution primitives used in parallel lan-
 guage design. S stands for a sequential ordering of
 its components, the whole structure ending after
 the last one, and P stands for a parallel structuring
 ending at the end time of its longest component. As
 an example, consider the musical object declared in
 Fig. la. Its graphical piano-roll-like representation
 is shown in Fig. ib, where time is represented on the
 x axis, pitch is represented on the y axis, and the
 amplitude of a note is represented by its shading.

 An extension of this approach allows for high-
 level timing control for defining nonstandard musi-
 cal objects such as grace notes. As these constructs
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 Fig. 1. Example of a time
 structured musical ob-

 ject (a) and graphical nota-
 tion of the same musical
 object (b).

 Fig. 2. Use of procedural
 abstraction in defining a
 compound musical ob-
 ject (a) and graphical nota-
 tion of the same musical
 object (b).

 (s (p (note :duration 2 :pitch 62 :amplitude 1.0)
 (note :duration 4 :pitch 65 :amplitude 0.7))

 (note :duration 5 :pitch 58 :amplitude 0.3)))

 Fig. la

 A

 u 65

 64

 63

 62

 61

 60

 59

 58

 57

 0 1 2 3 4 5 6 7 8 9 10

 Fig. lb time->

 (defun major-chord (duration key)
 (p (note :duration duration :pitch key)

 (note :duration duration :pitch (+ key 4)))
 (note :duration duration :pitch (+ key 7))))

 (s (major-chord 2 57) (major-chord 5 58) (major-chord 2 57))

 Fig. 2a

 A

 5 65

 63

 62

 61 -.
 60

 59

 58

 57

 0 1 2 3 4 5 6 7 8 9 10
 time ->

 Fig. 2b
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 are not essential for the present argument, we refer
 to Desain and Honing (1988) for more details. For
 naming complex musical objects, forming param-
 eterized families of objects, and defining musical
 transformations, we will use the standard proce-
 dural abstraction (function definition) facilities of
 the host language (Lisp). An example of a com-
 pound musical object built by those means is
 shown in Lisp source and graphically in Fig. 2.

 Next we introduce a basic transformation on the

 timing of fully constructed musical objects that we
 can use to demonstrate the behavior of the time

 functions when the duration of the object to which
 they are linked is changed. The stretch transforma-
 tion multiplies each duration of the enclosed ob-
 jects by a given factor.

 (stretch (note :duration 1 :pitch 60 :amplitude 1) 2)
 -* (note :duration 2 :pitch 60 :amplitude 1)

 These preliminary constructs constitute a world
 rich enough to introduce continuous time functions
 and their problems, but the same solution can be
 used in most present composition systems, how-
 ever different their notion of musical objects and
 collections thereof, and whatever way the time re-
 lations between them are specified.

 Continuous Control

 The Problem

 A natural thought, when bored with note-based dis-
 crete systems, is to pass each note a continuously
 variable function of time as parameter, for example,
 for pitch or amplitude, instead of a constant value.
 The functions passed are functions of the actual
 time, and elegant ways to build and transform them
 can be given. Often, though, these functions have
 been regarded as control signals (resembling audio
 signals) even up to the point where a list of data
 points, interpreted at a fixed (low) sample rate has
 been called a "function" (e.g., Schottstaedt 1983;
 Puckette 1988), obscuring the highly abstract pow-
 erful possibilities of functions in their mathemati-
 cal sense (exceptions are Rodet and Cointe 1984;
 Dannenberg, McAvinney, and Rubine 1986. Ander-
 son and Kuivila [1989] propose an alternative). But

 even when the full power of function specification
 is used, time functions are considered to be func-
 tions of actual time. This complicates the coupling
 of these functions to discrete objects and gave rise
 to the problem described above-the notorious
 vibrato problem and its discrete counterpart, the
 drumroll problem.

 A related concern is the use of a relative or
 absolute start point for the time base used. Com-
 posers sometimes prefer the use of an absolute time
 scale because of the (false) impression of total con-
 trol. However, it implies that an envelope be rede-
 fined each time it is used at another absolute point
 in time. This can be avoided simply by using a time
 base relative to the object under construction. This,
 of course, does not mean that the notion of abso-
 lute time control can be ignored. It is indispensable
 when time relations with events outside the mu-
 sical piece (e.g., midnight church bells) are to be
 taken into account, or, as is the case more often,
 when relations between different and independent
 musical objects have to be maintained (e.g., syn-
 chronized vibrato between different voices).

 A Solution

 The solution we propose is to make each control
 function a function of more parameters, each pa-
 rameter reflecting a different aspect of time. As an
 example, we will develop this notion for time func-
 tions of three parameters, the absolute start time of
 the discrete musical object it is controlling, the
 absolute time duration of this musical object, and a
 relative progress, expressed as how much time has
 elapsed since the start time, relative to the duration
 (a number in the range [0, 11). Other choices are, of
 course, possible here (e.g., start time, end time, and
 actual time). All these parameters will be passed
 their appropriate values automatically by the inter-
 pretative system. With this definition of a time
 function, the user can now choose to use some time
 parameters and ignore others to make time func-
 tions that behave differently when used for musical
 objects with different duration or start time.

 As a first example, let us define an elastic ramp
 control, independent of an absolute start time, tak-
 ing the full duration of the musical object to reach

 20 Computer Music Journal
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 Fig. 3. Definition of a ramp
 time function and a musi-
 cal object using it (a) and

 glissandi that extend
 when stretched in time

 given (b).

 (defun ramp (from to)
 #' (lambda (start duration progress)

 (+ from (* progress (- to from)))))

 (defun glissando-example ()
 (s (note :duration 1 :pitch 58)

 (p (note :duration 2.5 :pitch (ramp 64 61))
 (s (pause :duration .5)

 (note :duration 2 :pitch (ramp 61 60))))))

 (s (glissando-example) (stretch (glissando-example) 2))

 Fig. 3a

 A

 65

 64 -

 63

 62

 61 -

 60

 59x

 58

 57-

 0 1 2 3 4 5 6 7 8 9 10
 time ->

 Fig. 3b

 its final value. We will use it to control the pitch of
 some notes, creating glissandi. The function ramp
 produces a linear time function of the three time
 parameters mentioned above. It ignores the abso-
 lute start time and duration parameters, depending
 only on the progress of the evolving note (a number
 between 0 and 1) to calculate its value. Figure 3
 shows how the same ramp construct is used for
 notes of different duration-yielding an appropriate
 glissando-and how the musical idea is kept intact
 under a stretch transformation.

 Now let us construct, with the same means, a vi-
 brato function, parameterized by the fundamental
 pitch it is to be applied to, and the frequency and

 depth of the vibrato itself. It only depends on the
 actual time elapsed during the musical object-the
 product of duration and progress. Now the applica-
 tion of the vibrato function to notes of different du-

 ration will not alter the vibrato rate, nor will the
 stretch transformation applied to the compound
 musical object (see Fig. 4b).

 If we make a similar sinusoidal glissando func-
 tion, expressed in terms of relative time (progress),
 a stretch of the musical object will slow down the
 rate (see Fig. 4c).

 Absolute time can also be used to make time

 functions that are not influenced at all when they
 are applied to musical objects with a different dura-

 Desain and Honing 21
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 Fig. 4. Definition of musi-
 cal objects using vibrati,
 glissandi, and orna-
 ments (a); vibrati that
 elongate when stretched in
 time (b); sinusoidal glis-

 sandi that extend when

 stretched in time (c); and
 sinusoidal ornament not

 affected when stretched in
 time (d).

 (defun sine-oscillator (offset frequency depth)
 #' (lambda (start duration progress)

 (+ offset
 (* depth

 (sin (* 2 pi duration progress frequency))))))

 (defun sine-glissando (key depth)
 #' (lambda (start duration progress)

 (+ key
 (* depth (sin (* 2 pi progress))))))

 (defun sine-ornament (key count)
 #' (lambda (start duration progress

 &aux (relative-time (* duration progress)))
 (+ key

 (if (< relative-time count)
 (sin (* 2 pi relative-time))
 0))))

 (defun vibrato-example ()
 (s (note :duration 1 :pitch 58)

 (p (note :duration 2.5 :pitch (sine-oscillator 64 1 .5))
 (s (pause :duration .5)

 (note :duration 2 :pitch (sine-oscillator 61 1 1))))))

 (defun glissando-example ()
 (s (note :duration 1 :pitch 58)

 (p (note :duration 2.5 :pitch (sine-glissando 64 .5))
 (s (pause :duration .5)

 (note :duration 2 :pitch (sine-glissando 61 1))))))

 (defun ornament-example ()
 (s (note :duration 1 :pitch 58)

 (p (note :duration 2.5 :pitch (sine-ornament 64 .5))
 (s (pause :duration .5)

 (note :duration 2 :pitch (sine-ornament 61 1))))))

 (s (vibrato-example) (stretch (vibrato-example) 2)) ; Figure 4b
 (s (glissando-example) (stretch (glissando-example) 2)) ; Figure 4c
 (s (ornament-example) (stretch (ornament-example) 2)) ; Figure 4d

 Fig. 4a

 22 Computer Music Journal
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 Fig. 5. Surfaces represent-
 ing vibrato (a), glissando
 (b), and ornament (c) time
 functions as a function of
 duration and relative time.
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 o

 1

 5

 4

 2 2 dur-a--" *p rogress "
 Fig. 5b o

 ,1

 o-

 -1 .-
 5

 2a *.progress -

 Fig. Sc o
 o

 24 Computer Music Journal

This content downloaded from 
�������������128.32.10.230 on Sun, 28 Sep 2025 21:38:47 UTC������������� 

All use subject to https://about.jstor.org/terms



 Fig. 6. Example of a musi-
 cal object using a synchro-
 nized vibrato (a) and
 graphical notation of the
 same musical object (b).

 (defun sync-oscillator (offset frequency depth &optional (phase 0))
 #' (lambda (start duration progress)

 (+ offset
 (* depth

 (sin (* 2 pi (+ phase
 (* start frequency)
 (* duration progress frequency))))))))

 (defun synchronized-vibrato-example ()
 (s (note :duration 1 :pitch 58)

 (p (note :duration 2.5 :pitch (sync-oscillator 64 1 .5))
 (s (pause :duration .5)

 (note :duration 2 :pitch (sync-oscillator 61 1 1))))))

 (s (synchronized-vibrato-example)
 (stretch (synchronized-vibrato-example) 2))

 Fig. 6a

 A

 64

 63
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 60

 59 -
 58

 57

 0 1 2 3 4 5 6 7 8 9 10

 time ->

 Fig. 6b

 tion. An ornament could have such character; a
 sinusoidal ornament will keep its absolute timing
 when stretched (see Fig. 4d).

 The abstract vibrato, glissando, and ornament
 time functions can be depicted nicely in a three-
 dimensional surface plot, as is shown in Fig. 5. The
 relative time (duration * progress) and the duration
 are used as dependent variables here. For any note
 duration, the actual time function used will be a
 cross-section of these surfaces.

 Using the absolute start-time parameter enables
 full control over timing with respect to a global
 clock. This can be used to specify the phase of a vi-
 brato among parallel notes, such that they can be
 synchronized, as is shown in Fig. 6 (compare with
 Fig. 4b).

 This completes the examples of the use of gener-
 alized time functions with multiple parameters as
 control functions for individual basic objects. It
 shows how problems of synchronization and time
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 Fig. 7. Example of applying
 the same local envelope
 function to the individual
 note objects (a) and graphi-
 cal notation of the musical
 object (b).

 (defun envelope-example ()
 (let ((envelope (ramp 0 1)))

 (s (note :duration 1 :pitch 58 :amplitude envelope)
 (p (note :duration 2.5 :pitch 64 :amplitude envelope)

 (s (pause :duration .5)
 (note :duration 2 :pitch 61 :amplitude envelope))))))

 (s (envelope-example) (stretch (envelope-example) 2))

 Fig. 7a

 .c 65 -

 64 -

 63 -

 62

 61

 60

 59

 58

 57

 0 1 2 3 4 5 6 7 8 9 10
 time ->

 Fig. 7b

 modification are elegantly avoided by lifting the
 concept of a time function to a more abstract level.
 Of course the control functions used here are rudi-

 mentary in their musical value-much more elabo-
 rate envelopes are needed-but they can all be
 based on the same idea, and we show below how
 simple time functions can be combined into com-
 plex ones, but first we want to tackle the problem
 of time functions extending over a collection of sev-
 eral musical objects.

 Control Over Compound Objects

 In composition the use of time-dependent control
 specified over a collection of musical objects is
 abundant. The simplest example specifies the same

 control information to be applied to each basic ob-
 ject. Naming a control function (as done with the
 let local binding construct of Common Lisp) is then
 natural (see Fig. 7).

 A different method has to be used to pass time
 functions evolving over a compound musical ob-
 ject, to each basic musical object. An example of
 such a construct is a crescendo from a certain loud-

 ness level to another, starting at the start of the
 musical structure it is applied to, and extending
 over its total duration. We need to introduce a new

 construct in the language to enable the passing of
 information from collections of musical objects to
 such envelopes. It follows the same syntax as the
 let construct but modifies the time functions bound

 with it such that they will behave appropriately. In

 26 Computer Music Journal
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 Fig. 8. Example of applying
 a global crescendo func-
 tion to the individual note

 objects (a) and graphical
 notation of the musical
 object (b).

 (defun crescendo-example ()
 (let-time-fun-over-compound ( (crescendo (ramp 0 1) ) )

 (s (note :duration 1 :pitch 58 :amplitude crescendo)
 (p (note :duration 2.5 :pitch 64 :amplitude crescendo)

 (s (pause :duration .5)
 (note :duration 2 :pitch 61 :amplitude crescendo))))))

 (s (crescendo-example) (stretch (crescendo-example) 2))

 Fig. 8a

 A V

 -' 65-

 63

 62-

 61

 60

 59

 58 N

 57

 0 1 2 3 4 5 6 7 8 9 10
 time ->

 Fig. 8b

 Fig. 8 the definition of a crescendo is shown using
 the same ramp function and the same musical
 structure as used in Fig. 7.

 Time Function Composition

 Building a comprehensive set of musically useful
 time functions can best be done by supplying some
 simple, basic time functions and some ways of
 building complex ones by transforming and com-

 bining them. The function time-fun-compose is one
 of the higher-order functions that can be imagined
 that supports this. It generalizes any operation to
 the corresponding combination of the results of
 time functions. The example in Fig. 9 shows both
 an additive combination of an oscillator and a ramp
 time function for pitch, and one using a multiplica-
 tive combination for the amplitude parameter. An
 object-oriented approach here, packaging time func-
 tions in their own class and overloading the stan-

 Desain and Honing 27
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 Fig. 9. Example of combin-
 ing time functions (a) and
 graphical notation of the
 musical object (b).

 (defun compose-example ()
 (note :duration 7

 :pitch (time-fun-compose #'+ (oscillator 58 1 1) (ramp 5 0))
 :amplitude (time-fun-compose #'*

 (oscillator .5 1 .5)
 (ramp 1 0))))

 (s (compose-example) (stretch (compose-example) .5))

 Fig. 9a

 A

 6 65

 64

 63

 62 %

 61 _A4
 60 *..

 58-

 57

 0 1 2 3 4 5 6 7 8 9 10
 time ->

 Fig. 9b

 dard arithmetic operations for them, would, of
 course, simplify the syntax.

 Another useful combination is the concatenation

 of two time functions, with an extra argument ex-
 pressing the proportion of the duration handled by
 the first, implying the remaining time for the sec-
 ond. In Fig. 10 the concatenation of two ramp enve-
 lopes is shown, one used locally for the pitch, the
 other used globally for the amplitude parameters.

 An ever richer world of possibilities opens up
 when time functions accept time functions as argu-
 ments; their parameters may then change over time
 as well. In the example we use a sine oscillator that
 changes its frequency over time, controlled by a
 ramp time function. A new definition of an oscilla-

 tor that takes functional arguments can easily be
 constructed. In Fig. 1 la such a sine oscillator time
 function is defined (it uses the function time-funcall,
 and the function make-sine that supplies a sine
 function that remembers its state over time).

 It has to be stressed here again that these combi-
 nations of time functions preserve-in a compound
 way-the different ways in which their constituent
 components deal with time. For instance, the com-
 position of a glissando and a vibrato, as in Fig. 9b,
 can still be stretched in time consistently; the vi-
 brato will add cycles at the same rate and the glis-
 sando will slow down. This composibility of behav-
 ior is an important characteristic of this solution.

 28 Computer Music Journal
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 Fig. 10. Example of con-
 catenating time functions
 (a) and concatenations of
 a crescendo and a decre-

 scendo, and upward and
 downward glissandi (b)

 (defun crescendo-decrescendo-example ()
 (let -time-funs -over-compound
 ((cresc-decresc (time-fun-concatenate (ramp 0 1) (ramp 1 0) .2)))
 (let ((glissando

 (time-fun-concatenate (ramp 58 59) (ramp 59 58) .8)))
 (s (note :duration 1 :pitch glissando :amplitude cresc-decresc)

 (p (note :duration 2.5 :pitch 64 :amplitude cresc-decresc)
 (s (pause :duration .5)

 (note :duration 2
 :pitch 61
 :amplitude cresc-decresc)))))))

 (s (crescendo-decrescendo-example)
 (stretch (crescendo-decrescendo-example) 2))

 Fig. 10a

 A

 C 65 -

 64 -

 63 -

 62

 61

 60 -

 59-

 58

 57

 0 1 2 3 4 5 6 7 8 9 10
 time ->

 Fig. 10b

 Specification by Means of Transformation

 The reader might now wonder how transformations
 of a complex musical object can be taken care of.
 Because of the abstractions chosen in this design,
 this almost comes for free (in contradiction to other
 systems; see the closing remarks in [Dannenberg
 19891 and [Rahn 1990]). Transformations are just
 another way to specify complex musical objects.

 Below a set of transformations and their equiva-
 lents are shown.

 (stretch

 (amplitude
 (S (note) (transpose (note) 2))
 (ramp 1 0))

 2)
 -4

 (let-time-funs-over-compound ((envelope (ramp 1 0)))
 (s (note :duration 2 pitch 60 :amplitude envelope)

 (note :duration 2 pitch 62 :amplitude envelope)))

 Desain and Honing 29
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 Fig. 11. Example using
 an oscillator taking func-
 tional arguments (a) and
 graphical notation of the
 musical object (b).

 (defun sine-osc (frequency)
 (let ((sine (make-sine)))

 #' (lambda (start duration progress
 &aux (time (+ start (* duration progress))))

 (funcall sine time

 (time-funcall frequency start duration progress)))))

 (defun new-oscillator (offset frequency depth)
 (time-fun-compose #'+ offset

 (time-fun-compose #'* depth
 (sine-osc frequency))))

 (defun new-vibrato-example ()
 (s (note :duration 1 :pitch 58)

 (p (note :duration 2.5
 :pitch (new-oscillator 64 2 (ramp 0 1)))

 (s (pause :duration .5)
 (note :duration 2

 :pitch (new-oscillator 61 (ramp 0 1) 1)
 :amplitude (new-oscillator .5 (ramp 0 1) .5))))))

 (s (new-vibrato-example) (stretch (new-vibrato-example) 2))

 Fig. 11a
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 Fig. 12. Examples of attri-
 bute transformations (a)
 and graphical notation of
 the musical object (b).

 (defun transpose (object interval)
 (attribute-transform :pitch interval #'+ object))

 (defun amplitude (object amplitude)
 (attribute-transform :amplitude amplitude #'* object))

 (s (transpose (new-vibrato-example) -1)
 (amplitude (stretch (new-vibrato-example) 2)

 (ramp 1 0)))

 Fig. 12a
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 Fig. 12b

 A free mixture of direct specification and trans-
 formation can, of course, be used. In Fig. 12 two ex-
 amples of simple transformations are given. The
 attribute-transform function supports these kinds
 of transformations on the attributes of the notes. It

 takes, besides the musical object applied to, a key-
 word identifying an attribute, a time function or
 constant, and an operator used in combining the re-
 sults of the time function with the time functions
 or constants found in the musical object.

 Microwodd

 To enable the reader to test and experiment with
 these ideas, a simple implementation of a language
 with these capabilities is given the Appendix; the

 full implementation is part of our COCO composi-
 tion system. The basic and compound musical ob-
 jects are defined procedurally. Because their context
 (i.e., their start time) is still unknown at the time of
 their declaration, they will deliver functions (called
 event-list generators) of this context that will, when
 given a start time and a scale factor, return an event-
 list together with its end time.

 A draw procedure is available to transform such
 musical objects into the graphical representation
 that was used in drawing the figures. Low-level
 draw routines for the user's window system or plot-
 ter, implementing the draw-air-brush primitive still
 have to be supplied. The incorporation of a play
 primitive to sort event-lists and send data to a MIDI
 driver is left to the reader as an exercise. Note that
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 this is a nontrivial task since some technical tricks

 (e.g., allocating notes to different MIDI channels)
 must be used to allow continuous control of the in-

 dividual note parameters.

 Etensions

 Articulation

 Some parameters are not continuously variable by
 nature (e.g the articulation of a note-the propor-
 tion of its duration that it is actually sounding), but
 they can be modeled well by using continuously
 variable time functions extending over compound
 musical objects, sampled once automatically by the
 system at the objects' start time (as in [Dannenberg
 1989]). It is even possible to supply this information
 as an extra argument to all time functions (at the
 risk of becoming circular, articulation time func-
 tions themselves should not be allowed to use the

 articulation parameter). This elegantly solves the
 specification of, for example, different attack, de-
 cay, and release sections of envelope functions in
 terms of an articulation factor.

 Real-Time Control

 There is no reason why this approach could not be
 used in real-time control. If it is possible in the host
 system to specify the start of a musical object (e.g.,
 a note-on command) without its end, then the set
 of parameters passed to time functions has to be
 adapted (e.g., to absolute start time, and absolute
 time elapsed after the start). Time functions can
 naturally depend on incoming (real-time) parame-
 ters if their evaluation is postponed until the last
 possible moment. Note that in that case time func-
 tions are not strictly functional any more, reading
 control signals from input ports.

 Rubato Functions and Time Maps

 It might be possible to add flexibility to the com-
 mon rubato functions and nested time maps used
 for composition systems (Jaffe 1985; Desain and
 Honing 1992) by supplying them with multiple

 time arguments as well. To avoid circularity a divi-
 sion in score and performance time has to be made.
 This could then be a basis for meaningful specifica-
 tions and transformations of expressive timing. The
 possibilities have yet to be investigated.

 Advantages of "Generalized Time Functions"

 Generalized time functions have three main advan-

 tages. First, for the human user the language is
 transparent, and no unforeseen interactions or side
 effects take place. Second, musical objects, time
 functions, transformations of musical objects are
 orthogonal sets; they serve as a solid and extensible
 basis for further design, independent of host lan-
 guage or composition system. Finally, from the
 hardware perspective this approach has the distinct
 advantage of being easy to adapt to run on parallel
 architectures; each note can be handled by a differ-
 ent processor, without the need for information pass-
 ing between them. Note-based parallelism seems
 the most promising distribution of labor for most
 parallel architectures.
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 Appendix
 TIME FUNCTIONS MICROWORLD

 ;;; (C)1991, Peter Desain & Henkjan Honing
 Part of the COCO composition system

 ; In Common Lisp (uses loop macro)

 basic musical objects

 (defun note (&key (duration 1) (pitch 60) (amplitude 0.7))
 "Return an event-list-generator of a note"
 #'(lambda (start factor &aux (stretched-dur (* duration factor)))

 (list (list (list :start start
 :duration stretched-dur

 :pitch pitch
 :amplitude amplitude))

 (+ start stretched-dur))))

 (defun pause (&key (duration 1))
 "Return an event-list-generator of a pause"
 #'(lambda (start factor &aux (stretched-dur (* duration factor)))

 (list nil (+ start stretched-dur))))

 ;;; compound musical objects (time structuring)

 Desain and Honing 33

This content downloaded from 
�������������128.32.10.230 on Sun, 28 Sep 2025 21:38:47 UTC������������� 

All use subject to https://about.jstor.org/terms



 (defun s (&rest elements)
 "Return an event-list-generator of a sequential compound object"
 # ' (lambda (start factor)

 (loop for element in elements
 as start-time = start then end

 as (events end) = (funcall element start-time factor)
 append events into result
 finally (return (list result end)))))

 (defun p (&rest elements)
 "Return an event-list-generator of a parallel compound object"
 #'(lambda (start factor)

 (loop for element in elements
 as (events end) = (funcall element start factor)
 append events into result
 maximize end into end-time

 finally (return (list result end-time)))))

 ;; time transformation

 (defun stretch (object amount)
 "Return an event-list-generator of a stretched object"
 #'(lambda (start factor) (funcall object start (* amount factor)))

 ;; attribute transformation

 (define-modify-macro modify-attribute (operator time-fun)
 modify-time-fun)

 (defun modify-time-fun (old-time-fun operator new-time-fun)
 "Return a composition of two time-functions given an operator"
 (time-fun-compose operator new-time-fun old-time-fun))

 (defun attribute-transform (keyword time-fun operator object)
 "Return an event-list-generator of a transformed musical object"
 #'(lambda (start factor)

 (destructuring-bind (events end) (funcall object start factor)
 (let ((global-time-fun

 (global-to-local time-fun start (- end start)))
 (events-copy (copy-list events)))

 (loop for event in events-copy
 do (modify-attribute (getf event keyword)

 operator
 global-time-fun)

 finally (return (list events-copy end)))))))

 ;; use of time functions over compound musical objects

 (defmacro make-local-time-fun (time-fun start duration)
 "Return code for a time-function of unknown start and duration"
 #' (lambda (local-start local-duration local-progress)

 (funcall (global-to-local ,time-fun ,start ,duration)
 local-start local-duration local-progress)))

 (defmacro let-time-funs-over-compound (bindings expression)
 "Establish bindings of time-functions over compound object"
 (reduce ' (lambda (&rest list)

 (cons 'let-time-fun-over-compound list))
 bindings :initial-value expression :from-end t))

 (defmacro let-time-fun-over-compound ((var fun) expression)
 "Establish binding of time-function over compound object"
 (let ((start (gensym)) (dur (gensym)))

 (let* (,start ,dur (,var (make-local-time-fun ,fun ,start ,dur)))
 #' (lambda (start factor)

 (destructuring-bind (events end)
 (funcall ,expression start factor)

 (setf ,start start ,dur (- end start))
 (list events end))))))

 time function utilities

 (defun time-funcall (time-fun-or-constant start duration progress)
 "Return a constant or apply time-function to its arguments"
 (if (functionp time-fun-or-constant)

 (funcall time-fun-or-constant start duration progress)
 time-fun-or-constant))

 (defun time-fun-compose (operator &rest time-funs)
 "Return a time-function that applies operator to results of time-funs"
 #'(lambda (start duration progress)

 (apply operator
 (mapcar #'(lambda (time-fun)

 (time-funcall time-fun start duration progress))
 time-funs))))

 (defun time-fun-concatenate (time-fun-I time-fun-2 proportion)
 "Return a concatenation of two time-functions given a proportion"
 #'(lambda (start duration progress)

 (if (<= progress proportion)
 (time-funcall time-fun-i

 start

 (* duration proportion)
 (/ progress proportion))

 (time-funcall time-fun-2
 (+ start (* duration proportion))
 (* duration (- 1 proportion))
 (/ (- progress proportion) (- 1 proportion))))))

 (defun global-to-local (time-fun start duration)
 "Return a global time-function that can be referenced locally"
 #'(lambda (local-start local-duration local-progress)

 (let* ((time (+ local-start (* local-duration local-progress)))
 (progress (/ (- time start) duration)))

 (time-funcall time-fun start duration progress))))

 sine function used in figure 11

 (defun make-sine ()
 "Return sine function with state"

 (let ((phase 0) old-time)
 #'(lambda (time frequency)

 (when old-time

 (incf phase (* 2 pi (- time old-time) frequency)))
 (setf old-time time)
 (sin phase))))

 graphical score output

 (defun draw (musical-object &key (resolution 0.1))
 "Draw a musical object"
 (loop for note in (first (funcall musical-object 0 1))

 do (apply #'draw-note resolution note)))

 (defun draw-note (resolution &key start duration pitch amplitude)
 "Draw a note using the time-function or constant of the attributes"
 (loop

 for count from 0 to (floor (/ duration resolution))
 as time = (+ start (* count resolution))
 as old-pitch = (time-funcall pitch start duration 0)
 then new-pitch
 as old-amplitude = (time-funcall amplitude start duration 0)
 then new-amplitude
 as old-time = start then time

 as progress = (/ (- time start) duration)
 as new-pitch = (time-funcall pitch start duration progress)
 as new-amplitude = (time-funcall amplitude start duration progress)
 do (format t "-%-2,1,5$-2,1,7$-2,1,7$" time new-pitch new-amplitude)
 do (draw-air-brush old-time old-pitch

 time new-pitch
 old-amplitude new-amplitude)))

 (defun draw-air-brush (xl yl x2 y2 shadel shade2)
 to be provided by the user, adapted to the specific graphical system

 ;; draws a parallelogram with vertical left and righthand sides
 ;; (xl, yl) is mid left, shadel, (x2, y2) is mid right, shade2

 ;; examples of use (draws pictures as in figures 4b, 4c and 4d)

 (defun oscillator (offset frequency depth)
 ' (lambda (start duration progress)

 (+ offset
 (* depth

 (sin (* 2 pi duration progress frequency))))))

 (defun sine-glissando (key depth)
 ' (lambda (start duration progress)

 (+ key
 (* depth (sin (* 2 pi progress))))))

 (defun sine-ornament (key count)
 ' (lambda (start duration progress

 &aux (relative-time (* duration progress)))
 (+ key

 (if (< relative-time count)
 (sin (* 2 pi relative-time))
 0))))

 (defun vibrato-example ()
 (s (note :duration 1 :pitch 58)

 (p (s (pause :duration .5)
 (note :duration 2 :pitch (oscillator 61 1 1)))

 (note :duration 2.5 :pitch (oscillator 64 1 .5)))))

 (defun glissando-example ()
 (s (note :duration 1 :pitch 58)

 (p (s (pause :duration .5)
 (note :duration 2 :pitch (sine-glissando 61 1)))

 (note :duration 2.5 :pitch (sine-glissando 64 .5)))))

 (defun ornament-example ()
 (s (note :duration 1 :pitch 58)

 (p (s (pause :duration .5)
 (note :duration 2 :pitch (sine-ornament 61 1)))

 (note :duration 2.5 :pitch (sine-ornament 64 .5)))))

 ; figure 4b:
 ;(draw (s (vibrato-example) (stretch (vibrato-example) 2)))

 ; figure 4c:
 ;(draw (s (glissando-example) (stretch (glissando-example) 2)))

 ; figure 4d:
 ;(draw (s (ornament-example) (stretch (ornament-example) 2)))
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