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OVERVIEW ARTICLE

An Interdisciplinary Review of Music Performance 
Analysis
Alexander Lerch, Claire Arthur, Ashis Pati and Siddharth Gururani

A musical performance renders an acoustic realization of a musical score or other representation of 
a composition. Different performances of the same composition may vary in terms of performance 
parameters such as timing or dynamics, and these variations may have a major impact on how a listener 
perceives the music. The analysis of music performance has traditionally been a peripheral topic for the 
MIR research community, where often a single audio recording is used as representative of a musical work. 
This paper surveys the field of Music Performance Analysis (MPA) from several perspectives including the 
measurement of performance parameters, the relation of those parameters to the actions and intentions 
of a performer or perceptual effects on a listener, and finally the assessment of musical performance. 
This paper also discusses MPA as it relates to MIR, pointing out opportunities for collaboration and future 
research in both areas.

Keywords: Music Performance Analysis; Survey

1. Introduction
Music, as a performing art, requires a performer or group 
of performers to render a musical “blueprint” into an 
acoustic realization (Hill, 2002; Clarke, 2002b). This 
musical blueprint can, for example, be a score as in the 
case of Western classical music, a lead sheet for jazz, or 
some other genre-dependent representation describing 
the compositional content of a piece of music. The 
performers are usually musicians but might also be, e.g., a 
computer rendering audio.

The performance plays a major role in how listeners 
perceive a piece of music: even if the blueprint is identical 
for different renditions, as is the case in Western classical 
music, listeners may prefer one performance over another 
and appreciate different ‘interpretations’ of the same piece 
of music. These differences are the result of the performers’ 
intentionally or unintentionally interpreting, modifying, 
adding to, and dismissing information from the score or 
blueprint (for the sake of simplicity, the remainder of this 
text will use the terms score and blueprint synonymously). 
This constant re-interpretation of music is inherent to the 
art form and is a vital and expected component of music.

Formally, musical communication can be described as a 
chain as shown in Figure 1: the composer typically only 
communicates with the listener through the performer 

who renders the blueprint to convey musical ideas to the 
listener (Kendall and Carterette, 1990). The performer 
does this by varying musical parameters while leaving 
the compositional content untouched. The visualized 
model of the communication chain displays a one-
way communication path of information transmission. 
There can be, however, flows of information in the other 
direction, influencing the performance itself. Such a 
feedback path might transport information such as the 
instrument’s sound and vibration (Todd 1993), the room 
acoustics, (Luizard et al., 2020), and the audience reaction 
(Kawase, 2014). Although the recording studio lacks an 
audience, a performance can also evolve during a recording 
session. Katz (2004) points out that in such a session, 
performers will listen to the recording of themselves and 
adjust “aspects of style and interpretation.” In addition, 
the producer might also have impact on the recorded 
performance (Maempel, 2011).

The large variety of performance scenarios makes it 
necessary to focus on the common core of all music 
performances: the audio signal. While a music performance 
can, for example, contain visual information such as 
gestures and facial expressions (Bergeron and Lopes, 
2009; Platz and Kopiez, 2012; Tsay, 2013), not every music 
performance has these cues. A musical robot, for example, 
may or may not convey such cues. The acoustic rendition, 
however, is the integral part of a music performance 
that cannot be missing; simply put, there exists no 
music without sound. An audio recording is a fitting 
representation of the sound that allows for quantitative 
analysis. This audio-focused view should neither imply 

Lerch, A., et al. (2020). An Interdisciplinary Review of Music Performance 
Analysis. Transactions of the International Society for Music Information 
Retrieval, 3(1), pp. 221–245. DOI: https://doi.org/10.5334/tismir.53

Center for Music Technology, Georgia Institute of  
Technology, US
Corresponding author: Alexander Lerch  
(alexander.lerch@gatech.edu)

https://doi.org/10.5334/tismir.53
mailto:alexander.lerch@gatech.edu


Lerch et al: An Interdisciplinary Review of Music Performance Analysis222 

that non-audio information cannot be an important 
part of a performance nor that non-audio information 
cannot be analyzed. The focus on the audio recording of 
a performance makes it important to recognize that every 
recording contains processing choices and interventions 
by the production team with potential impact on the 
expressivity of the recording. Maempel (2011) discusses 
as main influences in the context of classical music the 
sound engineer (dynamics, timbre, panorama, depth) and 
the editor (splicing of different tracks, tempo and timing, 
pitch). These manipulations and any restrictions of the 
recording and distribution medium are part of the audio 
to be analyzed and cannot be separated anymore from the 
performers’ creation. As the release of a recording usually 
has to be pre-approved by the performers it is assumed 
that the performers’ intent has not been distorted.

Although the change of performance parameters can 
have a major impact on a listener’s perception of the 
music (Clarke, 2002a, also Section 4), the nature of the 
performance parameter variation is often subtle, and 
must be evaluated in reference to something; typically 
either the same performer and piece at a different time, 
different performances of the same piece, or deviations 
from a perfectly quantized performance rendered from a 
symbolic score representation (e.g., MIDI) without tempo 
or dynamics variations. Notice that this reference problem 
makes the genre of music for performance analysis biased 
towards classical music, as there is commonly an abstract 
(i.e., score) representation that easily fills the model of 
the quantized version of a piece of music. In addition, the 
classical model of performance is based on a finite number 
of pre-composed musical works performed by numerous 
individuals over time, thus making it a rich resource for 
performance analysis. Figure 2 visualizes two example 
piano performances of the beginning of Frédéric Chopin’s 
Fantasie in F Minor, Op. 49, where variations in local 
tempo, dynamics, and pedaling can easily be identified. 
Even in musical traditions that also have scores, such as 
jazz, the role of the performer as ‘interpreter’ of the score 
is complicated by normative practices such as elaborate 
embellishment and improvisation (often to the point 
of highly obscuring the original material). Other genres 
might completely eliminate the concept of separable 
composition and performance. McNeil (2017) argues, 
for example, that the distinction between ‘composition’ 
and ‘improvisation’ cannot capture the essence of 
performance creativity in Indian Hindustani music, where 
the definition of fixed ‘composed’ material and improvised 

material becomes hard and it might be more meaningful 
to refer to seed ideas which grow and expand throughout 
the performance.

Although the distinction between score and 
performance parameters is less obvious for non-classical 
genres of Western music, especially ones without clear 
separation between the composer and the performer, 
the concept and role of a performer as interpreter of 
a composition is still very much present, be it as a live 
interpretation of a studio recording or a cover version 
of another artist’s song. In these cases, the freedom of 
the performers in modifying the score information 
is often much higher than it is for classical music — 
reinterpreting a jazz standard can, for example, include 
the modification of content related to pitch, harmony, 
and rhythm.

Formally, performance parameters can be structured in 
the same basic categories that we use to describe musical 
audio in general: tempo and timing, dynamics, pitch, and 
timbre (Lerch, 2012). While the importance of different 
parameters might vary from genre to genre, the following 
list introduces some mostly genre-agnostic examples to 
clarify these performance parameter categories: 

Figure 1: Chain of musical communication from composer to listener. The dotted box disappears for performances that 
are not recorded.

Figure 2: Variations in two different performances of 
Frédéric Chopin’s Fantasie in F Minor, Op. 49 (taken from 
the Maestro dataset (Hawthorne et al., 2019). For each 
performance, timing and dynamics are shown using the 
piano rolls (darker color indicates higher velocity). Pedal 
control is shown below the piano roll (darker color indi-
cates increasing usage of the pedal). Visualized excerpts 
correspond to the beginning of the piece.
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•	 Tempo and Timing: the score specifies the general 
rhythmic content, just as it often contains a tempo 
indicator. While the rhythm is often only slightly 
modified by performers in terms of micro-timing, the 
tempo (both in terms of overall tempo as well as ex-
pressive tempo variation) is frequently seen only as a 
suggestion to the performer.
•	 Dynamics: in most cases, score information on dynam-

ics is missing or only roughly defined. The performers 
will vary loudness and highlight specific events with 
accents based on their plan for phrasing and tension, 
and the importance of certain parts of the score.
•	 Pitch: the score usually defines the general pitches 

to play, but pitch-based performance parameters in-
clude expressive techniques such as vibrato as well as 
intentional or unintentional choices for intonation.
•	 Timbre: as the least specific category of musical pa-

rameters, scores encode timbre often only implicitly 
(e.g., instrumentation) while performers can, for ex-
ample, change playing techniques or the choice of 
specific instrument configurations (such as the choice 
of organ registers).

There exist many performance parameters and playing 
techniques that either cannot be easily associated with 
one of the above categories or span multiple categories; 
examples of such parameters are articulation (legato, 
staccato, pizzicato) or forms of ornamentation in Baroque 
or jazz music.

One intuitive form of Music Performance Analysis (MPA) 
—discussing, criticizing, and assessing a performance 
after a concert— has arguably taken place since music 
was first performed. Traditionally, however, such reviews 
are qualitative and not empirical. While there are a 
multitude of approaches to music performance analysis, 
and numerous factors shape the insights and outcomes 
of such analyses, in this literature review we are only 
concerned with quantitative, systematic approaches to 
MPA scholarship. However, it is easily acknowledged that 
the design of any empirical study and the interpretation 
of results could be improved by a careful consideration of 
the musicological context (e.g., the choice of edition that a 
classical performance is rendered from — see Rink (2003)). 
Nevertheless, a detailed discussion of such contexts is 
beyond the scope of this article.

Early attempts at systematic and empirical MPA can be 
traced back to the 1930s with vibrato and singing analysis 
by Seashore (1938) and the examination of piano rolls 
by Hartmann (1932). In the past two decades, MPA has 
greatly benefited from the advances in audio analysis 
made by members of the Music Information Retrieval 
(MIR) community, significantly extending the volume of 
empirical data by simplifying access to a continuously 
growing heritage of commercial audio recordings. While 
advances in audio content analysis have had clear impact 
on MPA, the opposite is less true. An informal search 
reveals that while there have been publications on 
performance analysis at ISMIR, the major MIR conference, 
their absolute number remains comparably small 

(compare Toyoda et al., 2004; Takeda et al., 2004; Chuan 
and Chew, 2007; Sapp, 2007, 2008; Hashida et al., 2008; 
Liem and Hanjalic, 2011; Okumura et al., 2011; Devaney 
et al., 2012; Jure et al., 2012; Van Herwaarden et al., 2014; 
Liem and Hanjalic, 2015; Arzt and Widmer, 2015; Page et 
al., 2015; Xia et al., 2015; Bantula et al., 2016; Peperkamp 
et al., 2017; Gadermaier and Widmer, 2019; Maezawa et 
al., 2019 with a title referring to “music performance” out 
of approximately 1,950 ISMIR papers overall).

Historically, MIR researchers often do not distinguish 
between score-like information and performance 
information even if the research deals with audio 
recordings of performances. For instance, the goal of 
music transcription, a very popular MIR task, is usually 
to transcribe all pitches with their onset times (Benetos 
et al., 2013); that means that a successful transcription 
system transcribes two renditions of the same piece of 
music differently, although the ultimate goal is to detect 
the same score (note that this is not necessarily true 
for all genres). Therefore, we can identify a disconnect 
between MIR research and performance research that 
impedes both the evolution of MPA approaches and 
robust MIR algorithms, slows gaining new insights into 
music aesthetics, and hampers the development of 
practical applications such as new educational tools 
for music practice and assessment. This paper aims at 
narrowing this gap by introducing and discussing MPA 
and its challenges from an MIR perspective. In pursuit 
of this goal, this paper complements previous review 
articles on music performance research (Sloboda, 1982; 
Palmer, 1997; Gabrielsson, 1999, 2003; Goebl et al., 2005) 
and expands on Lerch et al. (2019) by integrating non-
classical and non-Western music genres, including a more 
extensive number of relevant publications, and clearly 
outlining the challenges music performance research is 
facing. While performance research has been inclusive 
of various musical genres, such as the Jingju music 
of the Beijing opera (Zhang et al., 2017; Gong, 2018), 
traditional Indian music (Clayton, 2008; Gupta and Rao, 
2012; Narang and Rao, 2017) and jazz music (Abeßer et 
al., 2017), the vast majority of studies are concerned with 
Western classical music. The focus on Western music can 
also be observed in the field of MIR in general, despite 
efforts in diversifying the field (Serra, 2014; Tzanetakis, 
2014). As mentioned, the reason for the focus on classical 
music within MPA may be due to the clear systematic 
differentiation between score and performance. This 
imbalance means that this overview article will necessarily 
emphasize Western classical music while referring to 
other musical styles wherever appropriate.

The remainder of this paper is structured as follows. 
The following Section 2 presents research on the 
objective description, modeling, and visualization of 
the performance itself, identifying commonalities and 
differences between performances. The subsequent 
sections focus on studies taking these objective 
performance parameters and relating them to either 
the performer (Section 3), the listener (Section 4), or the 
assessment of the performer from a listener’s perspective 
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(Section 5). We conclude our overview with a summary on 
applications of MPA and final remarks in Section 6.

2. Performance Measurement
A large body of work focuses on an exploratory approach 
to analyzing performance recordings and describing 
performance characteristics. Such studies typically extract 
characteristics such as the tempo curve or histogram 
(Repp, 1990; Palmer, 1989; Povel, 1977; Srinivasamurthy 
et al., 2017) or loudness curve (Repp, 1998a; Seashore, 
1938) from the audio and aim at either gaining general 
knowledge on performances or comparing attributes 
between different performances/performers based on 
trends observed in the extracted data. Additionally, there 
are also studies focusing on discovery of general patterns 
in performance parameters, which can be useful in 
identifying trends such as changes over eras (Ornoy and 
Cohen, 2018).

2.1 Tempo, timing, and dynamics
Deviations in tempo, timing, and dynamics are considered 
to be some of the most salient performance parameters 
and hence have been the focus of various studies in MPA. 
While these performance parameters have been studied 
in isolation in some instances, we present them together 
since there is substantial work aiming to understand their 
interrelation.

Close relationships were observed between musical 
phrase structure and deviations in tempo and timing 
(Povel, 1977; Shaffer, 1984; Palmer, 1997). For example, 
tempo changes in the form of ritardandi tend to occur 
at phrase boundaries (Palmer, 1989; Lerch, 2009). As a 
related structural cue, Chew (2016) proposed the concept 
of tipping points in the score, leading to a timing deviation 
with extreme pulse variability in the context of Western 
classical music performance.

Correlations were observed between timing and 
dynamics patterns (Repp, 1996b; Lerch, 2009). Dalla 
Bella and Palmer (2004) found that the overall tempo 
influences the overall loudness of a performance. There 
are also indications that loudness can be linked to pitch 
height (Repp, 1996b). Cheng and Chew (2008) analyzed 
global phrasing strategies for violin performance using 
loudness and tempo variation profiles and found 
dynamics to be more closely related to phrasing than 
tempo. While the close relation of tempo and dynamics 
to structure has been repeatedly verified, Lerch (2009) 
did not succeed in finding similar relationships between 
structure and timbre properties in the case of string 
quartet recordings.

In the context of jazz performances, Wesolowski (2016) 
found that both score and performance parameters such 
as underlying harmony, pitch interval size, articulation, 
and tempo had significant correlations with timing 
variations between successive eighth notes. He also found 
these parameters correlated with synchronicity between 
separate parts of a jazz ensemble. Several researchers 
conducted experiments studying swing style jazz (Ellis, 
1991; Prögler 1995; Collier and Collier 2002; Friberg and 

Sundström, 2002). Such studies focused on measuring or 
quantifying discrepancies and asynchrony of performers 
in order to study what characteristics of jazz performances 
made them ‘swing’ (Friberg and Sundström, 2002). Ellis 
(1991) found that asynchrony of jazz swing performers 
to the prevailing meter is positively correlated with the 
tempo and consists mainly of delaying attacks. Prögler 
(1995) noted that participatory asynchrony in swing is 
observed and measurable at a subsyntax level. Abeßer 
et al. (2014a) studied the relationship of note dynamics 
in jazz improvisation with other contextual information 
such as note duration, pitch, and position in the score. 
They used a score-informed music source separation 
algorithm to isolate the solo instrument and found that 
higher and longer notes tend to be louder, and structural 
accents are typically emphasized. Busse (2002) conducted 
an experiment to objectively measure deviations in 
terms of timing, articulation, and dynamics of jazz swing 
performers from mechanical regularity using MIDI-based 
‘groove quantization.’ He created reference performer 
models using the measured performance parameter 
deviations and compared them against mechanical or 
quantized models. Experts were asked to rate the ‘swing 
representativeness’ of the different models. He found that 
reference performer models were rated to be representative 
of swing whilst similar mechanical models of performance 
were rated poorly. Ashley (2002) described timing in jazz 
ballad performance as melodic rhythm flexibility over a 
strict underlying beat pattern, which is a type of rubato. 
He found timing deviations to have strong relationships 
with musical structure. Collier and Collier (1994) studied 
tempo in corpora of jazz performances. They manually 
timed these recordings and found that tempo was 
normally (Gaussian) distributed when computed in terms 
of metronome markings but not when computed using 
note durations. They noted that while jazz performances 
are stable in terms of tempo, systematic patterns in timing 
variabilities tend to serve expressive functions. Iyer (2002) 
contrasted micro-timing in African-American music from 
techniques in Western classical music such as rubato and 
ritardando. Employing an embodied cognition framework, 
he argued that the differences are due to the emphasis 
of the human body in the cultural aesthetics of African-
American musics.

Studies analyzing musical timing are not only 
limited to Western music. Srinivasamurthy et al. (2017) 
performed a large-scale computational analysis of 
rhythm in Hindustani classical percussion, confirming 
and quantifying tendencies pertaining to timing such as 
deviations of tempo within a metric cycle (also referred 
to as tal). The study demonstrated the value of using 
MIR techniques for rhythm analysis of large corpora of 
music. Bektaş (2005) confirmed the relationship between 
prosodic meter arûz and musical meter usûl in Turkish 
vocal music and found the existence of an even stronger 
concordance between a subset of prosodic patterns called 
bahir and usûl.

In addition to the studies already presented, there 
is a large body of work that focuses on modeling of 
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timing, tempo, and dynamics. Section 2.3 discusses such 
modeling approaches to performance measurement in 
detail.

2.2 Tonal analysis
Pitch-based performance parameters have been analyzed 
mostly in the context of single-voiced instruments. For 
instance, the vibrato range and rate has been studied 
for vocalists (Seashore, 1938; Devaney et al., 2011) 
and violinists (Bowman Macleod, 2006; Dimov, 2010). 
Regarding intonation, Devaney et al. (2011) found 
significant differences between professional and non-
professional vocalists in terms of the size of the interval 
between semi-tones.

Studies have also been conducted on the relationship 
between pitch and meter in the context of bebop style 
jazz (Järvinen, 1995; and Toiviainen, 2000). These studies 
found that measurements of chorus-level tonal hierarchies 
match quite closely to rating profiles of chromatic pitches 
found in European art music and that metrical structure 
plays a role in determining which pitches are emphasized 
or de-emphasized. The studies also indicated that there 
is no effect of syncopation or polyrhythm on the use of 
certain pitches.

Franz (1998) demonstrated the utility of Markov chains 
in the analysis of jazz improvisation. He found Markov 
chains useful in quantifying the frequency of notes and 
patterns of notes which are in turn useful as comparison 
tools for musical scale analyses. Furthermore, he noted 
that this modeling technique can be useful for stylistic 
comparison as well as in developing metrics for style 
and creativity. Frieler et al. (2016) proposed an analysis 
framework for jazz improvisation based on so-called 
‘midlevel units’ (MLU). These are musical units on the 
middle level between individual notes and larger form 
parts. They hypothesize that MLUs correspond to the 
improvisers’ playing ideas and musical ideas and propose 
a taxonomy system for MLUs. The authors subsequently 
study the distribution of occurrences and durations of 
MLUs in a large corpus of jazz improvisations. They note 
that the most common MLUs used in improvisations 
belong to the lick and line categories. They also find that 
the distribution of MLU types differs between performers 
and styles.

Research on jazz solos has utilized MIR methods 
for source separation and pitch tracking to analyze 
intonation and other tonal features (Abeßer et al., 
2014c, 2015). Abeßer et al. (2014c) proposed a score-
informed pitch tracking algorithm for analysis. They 
analyze distributions of various pitch contour features 
to identify patterns between different artists and 
instruments. Several contextual parameters such as 
relative position of notes in a phrase, beat position in 
the bar, etc., are also extracted and correlations between 
these parameters and pitch features are studied. They 
found statistically significant correlations between the 
pitch contour features and contextual features but 
most of the correlations had small effect size. Abeßer 
et al. (2015) utilized score-based source separation and 

pitch tracking to study intonation in jazz brass and 
woodwind solos to identify trends in tuning frequency 
over various decades, intonation for different artists, 
and properties of vibrato depending on context and  
performer.

A survey of computational methods utilized to study 
tonality in Turkish Makam music was conducted by Bozkurt 
et al. (2014), including research related to the analysis of 
tuning frequency and melodic phrases, transcription of 
performances, Makam recognition, as well as rhythmic and 
timbral analysis in Makam music. Atli et al. (2015) discuss 
the importance of tonic frequency or karar estimation for 
Makam music and devise a simple method for the task: 
they find that detecting the last note of a performance 
recording and estimating the frequency works well for 
karar estimation. Hakan et al. (2012) analyzed Turkish ney 
performances to identify key aspects of embellishments. 
They found that the rate of change of vibrato and ‘pitch 
bump’, which measures the deviation of pitch just before 
ascending or descending into the next note, were the 
key features useful for distinguishing performance styles 
across various performers.

Similarly, several researchers have worked on analysis of 
melody and tonality in Indian classical music. Ganguli and 
Rao (2017) modeled ungrammatical phrases, i.e., phrases 
straying away from the predetermined raga, in Hindustani 
music performance. They utilized computational 
techniques to model the tonal hierarchies and melodic 
shapes of different ragas toward that end. Viraraghavan 
et al. (2017) analyzed the use of ornamentation known as 
gamakas in Carnatic music performances. They find that 
the use of gamakas is vital in defining the raga during a 
performance.

Chen (2013) developed methods for analysis of 
intonation in Beijing opera or Jingju music. The methods, 
involving peak distribution analysis of pitch histograms, 
validated claims in literature that the fourth degree 
is higher, and the seventh degree is lower than the 
corresponding pitches in the equally tempered scale. 
Chen also found pitch histograms to be good features to 
distinguish role types in opera performances. Caro Repetto 
et al. (2015) utilized MIR techniques for pitch tracking and 
audio feature extraction to compare singing styles of two 
Jingju schools, namely the Mei and Cheng schools. Their 
experiments quantitatively support observations made 
in musicological texts about characteristics such as pitch 
register, vibrato, volume/dynamics, and timbre brightness. 
In addition, they find other properties not previously 
reported; for example, vibrato in Mei tends to be slower 
and wider on average than in Cheng. Yang et al. (2015) 
developed methods based on filter diagonalization and 
hidden Markov models to detect and model vibrato and  
portamento in performances of erhu, violin and Jingju 
opera vocals. There are studies aiming to understand the 
relationship between linguistic tone and melodic pitch 
contours in Jingju music by utilizing machine learning 
methods such as clustering (Zhang et al., 2015, 2014). 
Jingju music utilizes a two-dialect tone system making the 
tone-melody relationship complicated.
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2.3 Modeling
While most of the studies mentioned above make use 
of statistical methods to extract, summarize, visualize, 
and investigate patterns in the performance data, 
researchers have also investigated modeling approaches 
to better understand performances. Several overview 
articles exist covering research on generating expressive 
musical performance (Cancino-Chacón et al., 2018; Kirke 
and Miranda, 2013; Widmer and Goebl, 2004). In this 
subsection, however, we primarily focus on methods that 
model performance parameters leading to useful insights, 
while ignoring the generative aspect.

Several researchers have attempted to model timing 
variations in performances. In early work, Todd (1995) 
modeled ritardandi and accelerandi using kinematics 
theory, concluding that tempo variation is analogous to 
velocity. Li et al. (2017) introduced an approach invariant 
to phrase length for analyzing expressive timing. They 
utilize Gaussian mixture models (GMMs) to model the 
polynomial regression coefficients for tempo curves 
instead of directly modeling expressive timing. Liem and 
Hanjalic (2011) proposed an entropy-based deviation 
measure for quantifying timing in piano performances 
and found it to be a good alternative to standard-deviation-
based measures. Grachten et al. (2017) utilized recurrent 
neural networks to model timing in performances and 
demonstrated the benefits over static models that do 
not account for temporal dependencies between score 
features. Stowell and Chew (2013) introduced a Bayesian 
model of tempo modulation at various time-scales in 
performances.

For dynamics modeling, Kosta et al. (2015) applied 
and compared two change-point algorithms to detect 
dynamics changes in performed music, evaluating them 
using the corresponding dynamics markers in the score. 
In further research, Kosta et al. (2018) quantified the 
relationships between notated and performed dynamics 
using a corpus of performed Chopin Mazurkas. Kosta et 
al. (2016) applied various machine learning methods 
such as decision trees, support vector machines (SVM) 
and neural networks to understand the relationship 
between dynamics markings and performed loudness. 
They find that score-based features are more important 
than performer style features for predicting dynamics 
markings given performed loudness and vice versa. 
Similarly, Marchini et al. (2014) utilized decision trees, 
SVMs and k-nearest neighbor classifiers to model and 
predict performance features such as intensity, timing 
deviations, vibrato extent, and bowing speed of each 
note in string quartet performances. They found that 
inter-voice attributes played a strong role in models 
trained with ensemble recordings versus solo recordings. 
Grachten and Widmer (2012) introduced a so-called linear 
basis function model which encodes score information 
using weighted combinations of a set of basis functions. 
They utilize this model to predict and analyze dynamics 
in performance. Grachten et al. (2017) extended the 
framework with a recurrent model which better captures 
temporal relationships in order to improve modeling of 

timing. Cancino-Chacón et al. (2017) performed a large-
scale evaluation of linear, non-linear and temporal models 
for dynamics in piano and orchestral performances. These 
models utilize various features extracted from the score to 
encode structure in dynamics, pitch and rhythm.

An alternative direction in performance modeling 
research involves methods to discover rules for 
performance (Widmer, 2003). Widmer’s ensemble 
learning method succeeds in finding simple, and in some 
cases novel, rules for music performance. An approach to 
modeling expressive jazz performance based on genetic 
algorithms was proposed by Ramirez et al. (2008), learning 
rules to generate sequences that are best able to fit the 
training data.

2.4 Visualization
Many traditional approaches to performance parameter 
visualization such as pitch contours (Gupta and Rao, 2012; 
Abeßer et al., 2014c), tempo curves (Repp, 1990; Palmer, 
1989; Povel, 1977), and scatter plots (Lerch, 2009) are not 
necessarily interpretable or easily utilized for comparative 
studies. This led researchers to develop other, potentially 
more intuitive or condensed forms of visualization that 
allow describing and comparing different performances. 
The ‘performance worm’, for example, is a pseudo-3D 
visualization of the tempo-loudness space that allows the 
identification of specific gestures in that space (Langner 
and Goebl, 2002; Dixon et al., 2002). Sapp (2007, 2008) 
proposed the so-called ‘timescapes’ and ‘dynascapes’ 
to visualize subsequent similarities of performance 
parameters.

The ‘Phenicx’ project explored various ways of 
visualizing orchestral music information, including both 
score and performance information (Gasser et al., 2015). 
Dynagrams and tempograms, for example, are used to 
visualize various temporal levels of loudness and tempo 
variations, respectively. Dittmar et al. (2018) devised 
swingogram representations by analyzing and tracking 
the swing ratio implied by the ride cymbal in jazz swing 
performance. This visualization enables insights into jazz 
improvisation such as the interaction between a soloist 
and the drummer.

2.5 Challenges
The studies presented in this section often follow an 
exploratory approach; extracting various parameters in 
order to identify commonalities or differences between 
performances. While this is, of course, of considerable 
interest, one of the main challenges is the interpretability 
of these results. Just because there is a timing difference 
between two performances does not necessarily mean that 
this difference is musically or perceptually meaningful. 
Without this link, however, results can only provide 
limited insights into which parameters and parameter 
variations are ultimately important.

The acquisition of data for analysis is another challenge 
in MPA research. Goebl et al. (2005) discuss various 
methods that have been used to that end, including 
special instruments (such as Yamaha Disklaviers, piano 
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rolls), hand measurement of performance parameters, 
as well as automatic audio analysis tools. All these 
methods have potential downsides. For example, the 
use of special instruments and sensors excludes the 
analysis of performances not recorded on these specific 
devices and the associated formats (e.g., MIDI) may have 
difficulties representing special playing techniques. 
Manual annotation can be time consuming and tedious. 
The fact that the majority of studies surveyed here rely on 
manually annotated data implies that available algorithms 
for automatic performance parameter extraction lack 
the reliability and/or accuracy for practical MPA tasks. 
This is especially true for ensemble performances 
where the polyphonic and poly-timbral nature as 
well as timing fluctuations between individual voices 
complicate the analysis. As a result of these challenges, 
most studies are performed on manually annotated 
data with small sample sizes, possibly leading to poor 
generalizability of the results. The increasing number of 
datasets providing performance data as listed in Table 1, 
however, gives hope that this ceases to be an issue in the  
future.

3. Performer
While most studies focus on the extraction of performance 
parameters or the mapping of these parameters to the 
listeners’ perception (see Sections 4 and 5), some investigate 
the capabilities, goals, and strategies of performers. A 
performance is usually based on an explicit or implicit 
performance plan with clear intentions (Clarke, 2002b). 
This seems to be the case also for improvised music: 
for instance, Dean et al. (2014) could verify clearly 
perceivable structural boundaries in free jazz piano 
improvisation. There is, as Palmer verified, a clear relation 
between reported intentions and objective parameters 
related to phrasing and timing of the performance 
(Palmer, 1989). Similar relations between the intended 
emotionality and loudness and timing measures were 
reported in multiple studies (Juslin, 2000; Dillon, 2001, 
2003, 2004). For example, projected emotions such as 
anger and sadness show significant correlations with 
high and low tempo, and high and low overall sound 
level, respectively. Moreover, a performer’s control of 
expressive variation has been shown to significantly 
improve the conveyance of emotion. For instance, a 
study by Vieillard et al. (2012) found that listeners were 
better able to perceive the presence of specific emotions 
in music when the performer played an ‘expressive’ (as 
opposed to a mechanical) rendition of the composition. 
This suggests that the performer plays a fairly large role 
in communicating an emotional ‘message’ above and 
beyond what is communicated through the score alone 
(Juslin and Laukka, 2003). In music performed from a 
score in particular, the score-based representation might 
be thought of as a set of instructions in the sense that 
the notational system itself is used to communicate 
basic structural information to the performer. However, 
as noted by Rink (2003), the performer is not simply a 
medium or vessel through which performance directions 

are carried out, but “what performers do has the potential 
to impart meaning and create structural understanding.”

Research by Friberg and Sundström (2002) set out to 
tackle the question of what makes music ‘swing.’ Their 
approach was to examine the variation in the ‘swing ratio’ 
between pairs of eighth notes in jazz music, and they 
found that it tends to vary as a function of tempo. This 
finding has interesting implications for MPA as well as 
perceptual experiments. Across performers there is a clear 
systematic relation between the stretching of the ratio at 
slower tempi and the compressing of the ratio at higher 
tempi, such that it approaches a 1:1 ratio at approximately 
300 BPM. Interestingly, the duration of the second eighth 
note remained fairly constant at approximately 100 ms for 
medium to fast tempi, suggesting a practical limit on tone 
duration that, as the authors speculate, could be due to 
perceptual factors.

Another interesting area of research is performer error. 
Repp (1996a) analyzed performers’ mistakes and found 
that errors were concentrated in mostly unimportant parts 
of the score (e.g., middle voices) where they are harder 
to recognize (Huron, 2001), suggesting that performers 
intentionally or unintentionally avoid salient mistakes.

3.1 Influences
In addition to the performance plan itself, there are 
other influences shaping the performance. Acoustic 
parameters of concert halls such as the early decay time 
have been shown to impact performance parameters such 
as tempo (Schärer Kalkandjiev and Weinzierl, 2013, 2015; 
Luizard et al., 2019, 2020). Related work by Repp showed 
that pedaling characteristics in piano performance 
are dependent on the overall tempo (Repp, 1996c,  
1997b).

Other studies investigate the importance of the 
feedback of the music instrument to the performer 
(Sloboda, 1982); there have been studies reporting on 
the effect of deprivation of auditory feedback (Repp, 
1999), investigating the performers’ reaction to delayed 
or changed auditory feedback (Pfordresher and Palmer, 
2002; Finney and Palmer, 2003; Pfordresher, 2005), 
or evaluating the role of tactile feedback in a piano 
performance (Goebl and Palmer, 2008). In summary, the 
different forms of feedback have been found to have 
small but significant impact on reproduction accuracy of 
performance parameters.

3.2 Challenges
There is a wealth of information about performances that 
can be learned from performers. The main challenge of this 
direction of inquiry is that such studies have to involve the 
performers themselves. This limits the amount of available 
data and usually excludes well-known and famous artists, 
resulting in a possible lack of generalizability. Depending 
on the experimental design, the separation of possible 
confounding variables (for example, motor skills, random 
variations, and the influence of common performance 
rules) from the scrutinized performance data can be a 
considerable challenge.
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4. Listener
Every performance will ultimately be heard and processed 
by a listener. The listener’s meaningful interpretation 
of the incoming musical information depends on a 
sophisticated network of parameters. These parameters 
include both objective (or, at least, measurable) features 
that can be estimated from a score or derived from a 
performance, as well as subjective and ‘internal’ ones such 
as factors shaped by the culture, training, and history 
of the listener. Presently, there remain many acoustic 
parameters related to music performance where the 
listener’s response has not been measured, either in terms 
of perceptibility or aesthetic response or both. For this 
reason, listener-focused MPA remains one of the most 
challenging and elusive areas of research. However, to the 
extent that MPA research and its applications depend on 
perceptual information (e.g., perceived expressiveness), 
or intend to deliver perceptually-relevant output (e.g., 
performance evaluation or reception, similarity ratings), 
it is imperative to achieve a fuller understanding of the 
perceptual relevance of the manipulation and interaction 
of performance characteristics (e.g., tempo, dynamics, 
articulation). The subsequent paragraphs provide a brief 
overview of the relevant literature on music perception 
and MPA, along with some discussion of the relevance of 
this information for current and future work in both MPA 
and in MIR in general.

4.1 Musical expression
When it comes to listener judgments of a performance, 
it remains poorly understood which aspects are most 
important, salient, or pertinent for the listener’s sense 
of satisfaction. According to Schubert and Fabian 
(2014), listeners are very concerned with the notion of 
‘expressiveness’ which is a complex, multifaceted construct.  
Performance expression is commonly defined as “variations 
in musical parameters by a signal or instrumentalist” 
(Dibben, 2014). In other words, performance expression 
implies the intentional application of systematic variation 
on the part of the performer. On the other hand, expressive 
performance (or ‘expressiveness’) implies a judgment 
(either implicit or explicit) on the part of a listener.

As stated by Devaney (2016), however, not all variation 
is expressive: “The challenge [...] is determining which 
deviations are intentional, which are due to random 
variation, and which are due to specific physical constraints 
that a given performer faces, such as bio-mechanical 
limitations [...]. In regard to physical limitations, these 
deviations may be both systematic and observable in 
collected performance data, but may not be perceptible to 
listeners.” Thus, identifying the variation in a performance 
that would be intended as expressive is only the first step. 
Discovering which performance characteristics contribute 
to an expressive performance requires dissecting what 
listeners deem ‘expressive’ as well as understanding the 
relation and potential differences between measured and 
perceived performance features.

Expressiveness is genre and style dependent, meaning 
that the perceived appropriate level and style of expression 

in a pop ballad will be different from a jazz ballad, and that 
expression in a Baroque piece will be different from that 
of a Romantic piece —something that has been referred 
to as ‘stylishness’ (Fabian and Schubert, 2009; Kendall 
and Carterette, 1990). For example, the timing difference 
between the primary melody and the accompaniment 
tends to be wider in jazz than in classical music, and there 
is evidence that the direction of difference is reversed, i.e., 
the melody leads the accompaniment in classical piano 
music (Goebl, 2001; Palmer, 1996) while it follows in the 
case of jazz (Ashley, 2002). Similarly, syncopation created 
by anticipating the beat is normative in pop genres but 
appears to be reversed in jazz music where syncopation 
is created by delaying the onset of the melody (Dibben, 
2014).

In addition to style-related expression, there is the 
perceived amount of expressiveness, which is considered 
independent of stylishness (Schubert and Fabian, 2006). 
Finally, Schubert and Fabian (2014) distinguish a third 
‘layer’ of expressiveness, emotional expressiveness, 
which arises from a performer’s manipulation of 
various features specifically to alter or enhance 
emotion. This is distinct from musical expressiveness, 
or expressive variation, which more generally refers to 
the manipulation of compositional elements by the 
performer in order to be ‘expressive’ without necessarily 
needing to express a specific emotion. Practically 
speaking, however, it may be difficult for listeners to 
separate these varieties of expressiveness (Schubert and 
Fabian, 2014, p.293), and research has demonstrated that 
there are interactions between them (e.g., Vieillard et al.,  
2012).

4.2 Expressive variation
Several scholars have made significant advances in 
our understanding of the role of timing, tempo, and 
dynamic variation on listeners’ perception of music. As 
noted in Section 2, the subtle variations in tempo and 
dynamics executed by a performer have been shown to 
play a large role in highlighting and segmenting musical 
structure. For instance, the perception of metrical 
structure is largely mediated through changes in timing 
and articulation within small structural units such as 
the measure, beat, or sub-beat, whereas the perception 
of formal structures are largely communicated through 
changes across larger segments such as phrases (e.g., 
Sloboda, 1983; Gabrielsson, 1987; Palmer, 1996; Behne 
and Wetekam, 1993). An experiment by Sloboda (1983) 
found that listeners were better able to identify the 
meter of an ambiguous passage when performed by a 
more experienced performer. This suggests that even 
subtle changes in articulation and timing—more easily 
executed by an expert performer—play an important role 
in communicating structural information to the listener. 
Through measuring the differences in the performers’ 
expressive variations, Sloboda identified dynamics and 
articulation —in particular, a tenuto articulation— as the 
most important features for communicating which notes 
were accented.
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The extent to which a listener’s musical expectations 
align with a performer’s expressive variations appears 
an important consideration. For example, because of 
the predictable relation between timing and structural 
segmentation, it has been demonstrated that listeners 
find it difficult to detect timing (and duration) deviations 
from a ‘metronomic’ performance when the pattern and 
placement of those deviations are stylistically typical 
(Repp, 1990, 1992; Ohriner, 2012). Likewise, Clarke 
(1993) found pianists able to more accurately reproduce a 
performance when the timing profile was ‘normative’ with 
regards to the musical structure, and also found listeners’ 
aesthetic judgments to be highest for those performances 
with the original timing profiles compared with those that 
were inverted or altered.

In addition to communicating structural information 
to the listener, performance features such as timing 
and dynamics have also been studied extensively for 
their role in contributing to a perceived ‘expressive’ 
performance (see Clarke, 1998; Gabrielsson, 1999). For 
instance, a factor analysis by Schubert and Fabian (2014) 
examined the features and qualities that may be related 
to perceived expressiveness, finding that dynamics had 
the highest impact on the factor labeled ‘emotional 
expressiveness.’ Recent work by Battcock and Schutz 
(2019) showed attack rate to be the most important 
predictor of intensity (or “arousal” in terms of two-
dimensional models of emotion). While this work was not 
strictly performance analysis since the authors measured 
elements that correspond to fixed directions from a 
score (e.g., mode; pitch height), the authors do analyze 
attack rate, which is related to timing. Specifically, the 
authors point out that understanding the role of timing 
is confounded by the fact that it encompasses several 
distinct musical properties such as tempo and rhythm. 
Although the authors do not attempt to segregate these 
phenomena (tempo and rhythm) in their perceptual 
experiments, it is clear that for a performer, adjusting 
the tempo (globally or locally) would influence the 
attack rate, and therefore have an impact on perceived 
intensity.

The relation between changes in various expressive 
parameters and their effect on perceived tension 
ratings has been fairly well studied but with conflicting 
results. Krumhansl (1996) found that in an experiment 
comparing an original performance to versions with 
flat dynamics, flat tempo, or both, listeners’ continuous 
tension ratings were not affected, implying that tension 
was primarily conveyed by the melodic, harmonic, and 
durational elements central to the composition (rather 
than the performance). A similar result was reported by 
Farbood and Upham (2013) where repetitions of the same 
verse across a single performance —as well as a harmonic 
reduction of it— were found to produce strongly correlated 
tension ratings. However, Gingras et al. (2016) studied the 
relation between musical structure, expressive variation, 
and listeners’ ratings of musical tension, and found that 
variations in expressive timing were most predictive of 
listeners’ tension ratings.

It is equally important to empirically test assumptions 
about the perceptual effects of expressive variation. 
For instance, some aspects of so-called ‘micro-timing’ 
variation —defined as small, systematic, intentional 
deviations in timing— have been debated with regard to 
their perceptual effects. In particular, micro-timing has 
been suggested as one of the principle contributors to the 
perception of ‘groove’ (Iyer, 2002; Roholt, 2014). In fact, 
there is a sizable portion of literature dedicated to this 
phenomenon, and the role of micro-timing in generating 
embodied cognitive responses (Dibben, 2014). However, 
Davies et al. (2013) parametrically varied the amount of 
micro-timing in certain jazz, funk, and samba rhythm 
patterns, and, contrary to popular belief, found that 
systematic micro-timing generally led to decreased ratings 
of perceived groove, naturalness, and liking. Similarly, 
Frühauf et al. (2013) found that the highest ratings of 
perceived ‘groove quality’ were given to drum patterns that 
were perfectly quantized, and that increasing systematic 
micro-timing (by shifting either forwards or backwards), 
resulted in lower quality ratings.

While the role of expressive variation in timbre and 
intonation has generally been less studied, there has been 
substantial attention given to the expressive qualities of 
the singing voice, where these parameters are especially 
relevant (see Sundberg, 2018). For instance, Sundberg 
et al. (2013), found that a sharpened intonation at a 
phrase climax contributed to increased perception 
of expressiveness and excitement, and Siegwart and 
Scherer (1995) found that listener preferences were 
correlated with certain spectral components such as the 
relative strength of the fundamental and the value of the 
spectral centroid. Similarly, the role of ornamentation 
in contributing to perceived expression, skill, or overall 
quality, has been largely overlooked, especially as it relates 
to music outside of the classical canon. Some exceptions 
include research showing subjective preferences for an 
idealized pitch contour and timing profile of the Indian 
classical music ornament Gamak (Gupta and Rao, 2012), 
and, in pop music, the expressive and emotional effects 
of portamento (or pitch ‘slides’), as well as the so-called 
‘noisy’ sounds of the voice, have been theorized to be of 
strong importance in generating an emotional response 
(Dibben, 2014). In the latter case, no actual perceptual 
experiments have been conducted to investigate this 
claim, however, it is consistent with ethological research 
on the role of vocalizations and sub-vocalizations in 
affective communication (Huron, 2015).

The reason why expressive variation is so enjoyable 
for listeners remains largely an open research question. 
Expressive variation is assumed to be the most important 
cue to a listener that they are hearing a uniquely human 
performance and is regularly hailed as the key component 
in communicating an aesthetically pleasing performance. 
As mentioned above, its role appears to go beyond 
bolstering the communication of musical structure. And, as 
pointed out by Repp, even a computerized or metronomic 
performance will contain grouping cues (Repp, 1998b). 
However, one prominent theory suggests that systematic 
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performance deviations (such as tempo) may generate 
aesthetically pleasing expressive performances in part 
due to their exhibiting characteristics that mimic natural 
motion in the physical world (Gjerdingen, 1988; Todd, 
1992; Repp, 1993; Todd, 1995; van Noorden and Moelants, 
1999) or human movements or gestures (Ohriner, 2012; 
Broze III, 2013). For instance, Friberg and Sundberg (1999), 
suggested that the shape of final ritardandi matched the 
velocity of runners coming to a stop and Juslin (2003) 
includes ‘motion principles’ in his model of performance 
expression.

4.3 Mapping and Predicting Listener Judgments
In order to isolate listeners’ perception of parameters 
that are strictly performance-related, several scholars 
have investigated listeners’ judgments across multiple 
performances of the same excerpt of music (e.g., Repp, 
1990; Fabian and Schubert, 2008). A less-common 
technique relies on synthesized constructions or 
manipulations of performances, typically using some 
kind of rule-based system to manipulate certain musical 
parameters (e.g., Repp, 1989; Sundberg, 1993; Clarke, 
1993; Repp, 1998b), and frequently making use of 
continuous data collection measures (e.g., Schubert and 
Fabian, 2014).

From these studies, it appears that listeners (especially 
‘trained’ listeners) are capable not only of identifying 
performance characteristics such as phrasing, articulation, 
and vibrato, but that they are frequently able to identify 
them in a manner that is aligned with the performer’s 
intentions (e.g., Nakamura, 1987; Fabian and Schubert, 
2009). However, while listeners may be able to identify 
performers’ intentions, they may not have the perceptual 
acuity to identify certain features with the same precision 
allowed by acoustic measures. For instance, a study by 
Howes et al. (2004) showed there was no correlation 
between measured and perceived vibrato onset 
times. Similarly, Geringer (1995) found that listeners 
consistently identified increases in intensity (crescendos) 
with a greater perceived magnitude of contrast than the 
decreases in intensity (decrescendos) regardless of the 
actual magnitude of change. This suggests that there 
are some measurable performance parameters that may 
not map well to human perception. For example, an 
objectively measurable difference between a ‘deadpan’ 
and ‘expressive’ performance does not necessarily 
translate to perceived expressivity, especially if the changes 
in measured performance parameters are structurally 
normative, as discussed in Section 4.2. Two related papers, 
by Li et al. (2015) and Sulem et al. (2019), describe research 
attempting to better understand the communication 
chain from score interpretation to performance and 
performance to perception, respectively. The former 
attempted to match quantitative acoustic measures 
with expressive musical terms (commonly used in score 
directions as the principal means of communicating 
expressive instruction), while the latter asked performers 
to match the same expressive musical terms in terms of 

their perceived emotion along a common dimensional 
model of emotion (i.e., Russell, 1980). This work lays the 
foundation for future research to empirically examine the 
full chain of communication; in attempting to manipulate 
the same acoustic measurements it may be possible to 
predict perceived musical and emotional correlates.

An important but rarely discussed consideration is 
the relation between observed differences in a model 
and the perceptual evaluation of those differences by a 
listener. For instance, Dixon et al. (2006) experimented 
with various methods for extracting perceived tempo 
information in relation to expressively-performed 
excerpts with an emphasis on some of the assumptions of 
beat-tracking algorithms. They discuss the presumption 
that what is desirable in a beat-tracking model is typically 
to accurately mark what was performed rather than 
what was perceived, even though the two may differ. In  
particular, they note that the perceived beat is smoother 
than the performance data would indicate. Busse 
(2002) evaluated expert listener judgments of the 
optimal ‘swing style’ of performed jazz piano melodies 
that were either unmodified, or modified according to 
one of four ‘derived’ models. The first derived model 
altered parameters (durations, onsets, and velocities) 
according to performer averages, whereas the other three 
derived ‘mechanical’ models had the same parameters 
fixed by simple ratio relationships. Unsurprisingly, the 
unaltered and derived models were generally preferred 
to the mechanical models. (It is well known that some 
randomness is required in order for a performance to 
sound convincingly human, and various jitter functions 
have been implemented in computer music software 
for this reason since the 1980s.) Despite that one 
might predict human preference for one of the original 
(performed) melodies, several of the derived models 
were not rated statistically different from the original 
melodies, suggesting that the averaged parameter values 
created a realistic model. However, the parameters of the 
unmodified originals were not reported nor compared 
against each other or those of the derived models, making 
it impossible to examine any difference thresholds across 
the measured parameters in terms of their impact on 
the swing ratings. Devaney (2016) also compared model 
classification against human classification using a 
singer-identification task to explore differences between 
inter-singer variability and intra-singer similarity across 
different performance parameters. In general, listeners 
performed the singer identification task better than 
chance but far below the abilities of the computational 
model. However, there were some similarities between the 
model parameters and the features reported by listeners 
as important determinants of their classification (e.g., 
vibrato, pitch stability, timbre, breathiness, intonation). 
Furthermore, the same pair of singers that ‘confused’ 
the model were the same two conflated by listeners. 
These experiments represent excellent examples from 
a scarce pool of research attempting to bridge MIR 
and cognitive approaches to performance research. 
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However, only a comparison of systematic manipulations 
between contrived stimuli will allow sufficient control 
over the individual parameters necessary to come 
to definitive conclusions about the perceptibility of 
variations in performance and their aesthetic value for  
performance.

Given a weak relation between a measured parameter 
and listeners’ perception of that parameter, another 
important question arises: is the parameter itself not 
useful in modeling human perception, or is the metric 
simply inappropriate? For example, there are many 
aspects of music perception that are known to be 
categorical (e.g., pitch) in which case a continuous metric 
would not work well in a model designed to predict 
human ratings.

Similarly, there is the consideration of the role of 
the representation and transformation of a measured 
parameter for predicting perceptual ratings. This question 
was raised by Timmers (2005), who examined the 
representation of tempo and dynamics that best predicted 
listener judgments of musical similarity. This study found 
that, while most existing models rely on normalized 
variations of tempo and dynamics, the absolute tempo 
and the interaction of tempo and loudness were better 
predictors.

Finally, there are performance features that are either 
not captured in the audio signal or else not represented 
in a music performance analysis that may well contribute 
to a listener’s perception. For instance, if judgments of 
perception are made in a live setting, then many visual 
cues —such as performer movement, facial expression, 
or attire— will be capable of altering the listener’s 
perception (Huang and Krumhansl, 2011; Juchniewicz, 
2008; Wapnick et al., 2009; Livingstone et al., 2009; Silvey, 
2012). Importantly, visual information such as performer 
gesture and movement may contribute to embodied 
sensorimotor engagement, which is thought to be an 
essential component of music perception (e.g., Leman and 
Maes, 2014; Bishop and Goebl, 2018), and could therefore 
be influential on ratings of performance aesthetics and/or 
musical expression.

Clearly, the execution of multiple performance 
parameters is important for the perception of both small-
scale and large-scale musical structures, and appears to have 
a large influence over listeners’ perception and experience 
of the emotional and expressive aspects of a performance. 
Since the latter appears to carry great significance for 
both MPA and music perception research, it suggests that 
future work ought to focus on disentangling the relative 
weighting of the various features controlled by performers 
that contribute to an expressive performance. Since it is 
frequently alluded to that a performer’s manipulation of 
musical tension is one of the strongest contributors to an 
expressive performance, further empirical research must 
attempt to systematically break down the concept of 
tension as a high-level feature into meaningful collections 
of smaller, well-defined features that would be useful for 
MPA.

4.4 Challenges
The research surveyed in this section highlights the 
importance of human perception in MPA research, 
especially as it pertains to the communication of emotion, 
musical structure, and creating an aesthetically pleasing 
performance. In fact, the successful modeling of perceptually 
relevant performance attributes, such as those that mark 
‘expressiveness’, could have a large impact not only for MPA 
but for many other areas of MIR research, such as computer-
generated performance, automatic accompaniment, virtual 
instrument design and control, or robotic instruments 
and HCI (see, for example, the range of topics discussed 
by Kirke and Miranda (2013)). A major obstacle impeding 
research in this area is the inability to successfully isolate 
(and therefore understand) the various performance 
characteristics that contribute to a so-called ‘expressive’ 
performance from a listener’s perspective. Existing literature 
reviews on the topic of MPA have not been able to shed 
much light on this problem, in part because researchers 
frequently disagree on (or conflate) the various definitions 
of ‘expressive,’ or else findings appear inconsistent across 
the research, likely as a result of different methodologies, 
types of comparisons, or data. As noted by Devaney (2016), 
combining computational and listening experiments could 
lead to a better understanding of which aspects of variation 
are important to observe and model. Careful experimental 
design and/or meta-analyses across both MPA and cognition 
research, as well as cross-collaboration between MIR and 
music cognition researchers, may therefore prove fruitful 
endeavors for future research.

5. Performance Assessment
Assessment of musical performances deals with providing 
a rating of a music performance with regard to specific 
aspects of the performance such as accuracy, expressivity, 
and virtuosity. Performance assessment is a critical and 
ubiquitous aspect of music pedagogy: students rely on 
regular feedback from teachers to learn and improve skills, 
recitals are used to monitor progress, and selection into 
ensembles is managed through competitive auditions. The 
performance parameters on which these assessments are 
based are not only subjective but also ill-defined, leading 
to large differences in subjective opinion among music 
educators (Thompson and Williamon, 2003; Wesolowski 
et al., 2016). However, other studies have shown that 
humans tend to rate prototypical (average) performances 
higher than individual performances (Repp, 1997a; Wolf 
et al., 2018). This might indicate that performances are 
rated based on some form of perceived distance from 
an ‘ideal’ performance. Apart from music education, 
assessment of performances is also an important area 
of focus for the evaluation of computer-generated 
music performances (Bresin and Friberg, 2013) where 
researchers have primarily focused on listening studies to 
understand the effect of musical knowledge and biases on 
rating performances (De Poli et al., 2014) and the degree 
to which computer generated performances stack up 
against those by humans (Schubert et al., 2017).
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Work within assessment-focused MPA deals with 
modeling how humans assess a musical performance. 
The goal is to increase the objectivity of performance 
assessments (McPherson and Thompson, 1998) and to build 
accessible and reliable tools for automatic assessment. 
While this might be considered a subset of listener-focused 
MPA, its importance to MPA research and music education 
warrants a tailored review of research in this area. 

Over the last decade, several researchers have worked 
towards developing tools capable of automatic music 
performance assessment. These can be loosely categorized 
based on (i) the parameters of the performance that are 
assessed, and (ii) the technique/method used to design 
these systems.

5.1 Assessment parameters
Tools for performance assessment evaluate one or more 
performance parameters typically related to the accuracy 
of the performance in terms of pitch and timing (Wu et 
al., 2016; Vidwans et al., 2017; Pati et al., 2018; Luo, 2015), 
or quality of sound (timbre) (Knight et al., 2011; Romani 
Picas et al., 2015; Narang and Rao, 2017). In building 
an assessment tool, the choice of parameters may 
depend on the proficiency level of the performer being 
assessed. For example, beginners will benefit more from 
feedback in terms of low-level parameters such as pitch 
or rhythmic accuracy as opposed to feedback on higher-
level parameters such as articulation or expression. 
Assessment parameters can also be specific to culture 
or the musical style under consideration, for example, 
in the case of Indian classical music the nature of pitch 
transitions or gamakas plays an important role (Gupta 
and Rao, 2012), while correct pronunciation of syllables 
is a strict requirement for Chinese Jingju music (Gong, 
2018).

Assessment tools can also vary based on the granularity 
of assessments. Tools may simply classify a performance 
as ‘good’ or ‘bad’ (Knight et al., 2011; Nakano et al., 
2006), or grade it on a scale, e.g., from 1 to 10 (Pati et 
al., 2018). Systems may provide fine-grained note-by-note 
assessments (Romani Picas et al., 2015; Schramm et al., 
2015) or analyze entire performances and report a single 
assessment score (Nakano et al., 2006; Pati et al., 2018; 
Huang and Lerch, 2019).

5.2 Assessment methods
While different methods have been used to create 
performance assessment tools, the common approach 
has been to use descriptive features extracted from the 
audio recording of a performance, based on which a 
classifier predicts the assessment. This approach requires 
availability of performance data (recordings) along with 
human (expert) assessments for the rated performance 
parameters.

The level of sophistication of classifiers was limited 
especially for early attempts, in which classifiers such as 
Support Vector Machines were used to predict human 
ratings. In these systems, the descriptive features became 
an important aspect of the system design. In some 
approaches, standard spectral and temporal features such 
as spectral centroid, spectral flux, and zero-crossing rate 
were used (Knight et al., 2011). In others, features aimed 
at capturing certain aspects of music perception were 
hand-designed using either musical intuition or expert 
knowledge (Nakano et al., 2006; Abeßer et al., 2014b; 
Romani Picas et al., 2015; Li et al., 2015). For instance, 
Nakano et al. (2006) used features measuring pitch 
stability and vibrato as inputs to a simple classifier to rate 
the quality of vocal performances. Several studies also 
attempted to combine low-level audio features with hand-
designed feature sets (Luo, 2015; Wu et al., 2016; Vidwans 
et al., 2017), as well as incorporating information from the 
musical score or reference performance recordings into 
the feature computation process (Devaney et al., 2012; 
Mayor et al., 2009; Vidwans et al., 2017; Bozkurt et al., 
2017; Molina et al., 2013; Falcao et al., 2019).

Recent methods, however, have transitioned towards 
using advanced machine learning techniques such as 
sparse coding (Han and Lee, 2014; Wu and Lerch, 2018c,a) 
and deep learning (Pati et al., 2018). Contrary to earlier 
methods which focused on hand-designing musically 
important features, these techniques input raw data 
(usually in the form of pitch contours or spectrograms) 
and train the models to automatically learn meaningful 
features so as to accurately predict the assessment ratings.

In some ways, this evolution in methodology has 
mirrored that of other MIR tasks: there has been a 
gradual transition from feature design to feature learning 
(compare Figure 3). Feature design and feature learning 

Figure 3: Schematic showing the comparison between different approaches for music performance assessment.
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have an inherent trade-off. Learned features extract 
relevant information from data which might not be 
represented in the hand-crafted feature set. This is evident 
from their superior performance at assessment modeling 
tasks (Wu and Lerch, 2018a; Pati et al., 2018). However, 
this superior performance comes at the cost of low 
interpretability. Learned features tend to be abstract and 
cannot be easily understood. Custom-designed features, 
on the other hand, typically either measure a simple low-
level characteristic of the audio signal or link to high-level 
semantic concepts such as pitch or rhythm which are 
intuitively interpretable. Thus, such models allow analysis 
that can aid in the interpretation of semantic concepts for 
music performance assessment. For instance, Gururani 
et al. (2018) analyzed the impact of different features on 
an assessment prediction task and found that features 
measuring tempo variations were particularly critical, and 
that score-aligned features performed better than score-
independent features.

5.3 Challenges
In spite of several attempts across varied performance 
parameters using different methods, the important 
features for assessing music performances remain 
unclear. This is evident from the average accuracy of 
these tools in modeling human judgments. Most of 
the presented models either work well only for very 
select data (Knight et al., 2011) or have comparably 
low prediction accuracies (Vidwans et al., 2017; Wu et 
al., 2016), rendering them unusable in most practical 
scenarios (Eremenko et al., 2020). While this may be 
partially attributed to the subjective nature of the task 
itself, there are several other factors which have limited 
the improvement of these tools. First, most of the models 
are trained on small task-specific or instrument-specific 
datasets that might not reflect noisy real-world data. This 
reduces the generalizability of these models. The problem 
becomes more serious for data-hungry methods such 
as deep learning which require large amounts of data 
for training. The larger datasets (>3000 performances) 
based on real-world data are either not publicly available 
(for example, the FBA dataset (Pati et al., 2018)) or only 
provide intermediate representations such as pitch 
contours (for example, the MAST melody dataset (Bozkurt 
et al., 2017)). Thus, more efforts are needed towards 
creating and releasing larger performance datasets for 
the research community. Second, the distribution of 
ground-truth (expert) ratings given by human judges, 
in many datasets, skewed towards a particular class or 
value (Gururani et al., 2018). This makes it challenging 
to train unbiased models. Finally, the performance 
parameters required to adequately model a performance 
are not well understood. While the typical approach is 
to train different models for different parameters, this 
approach necessitates availability of performance data 
along with expert assessments for all these parameters. 
On many occasions, such assessments are either not 
available or are costly to obtain. For instance, while 
the MAST rhythm dataset (Falcao et al., 2019) contains 

performance recordings (and pass/fail assessment 
ratings) for around 1000 students, the finely annotated 
(on a 4-point scale) version of the same dataset contains 
only 80 performances. An interesting direction for 
future research might consider leveraging models which 
are successful at assessing a few parameters (and/or 
instruments) to improve the performance of models for 
other parameters (and/or instruments). This approach, 
usually referred to as transfer learning, has been found to 
be successful in other MIR tasks (Choi et al., 2017).

In addition to the data-related challenges, there are 
several other challenging problems for MIR researchers 
interested in this domain. Better techniques need to be 
developed to factor the score (or reference) information 
into the assessments. So far, this has been accomplished 
by either using dynamic time warping (DTW) based 
methods (Vidwans et al., 2017; Bozkurt et al., 2017; 
Molina et al., 2013) to compute distance-based features 
between the reference and the performance or by 
computing vector similarity between features extracted 
from the performance and the reference (Falcao et al., 
2019). However, expressive performances are supposed 
to deviate from the score and simple distance-based 
features may fail to adequately capture the nuances. The 
problem of how to incorporate this information into 
the assessment computation process remains an open 
problem.

Another area which requires attention from researchers 
lies in improving the ability to interpret and understand 
the features learned by end-to-end models. This will 
play an important role in improving assessment tools. 
Interpretability of neural networks is still an active area 
of research, and performance assessment is an excellent 
testbed for developing such methods.

6. Conclusion
The previous sections outlined insights gained by MPA 
at the intersection of audio content analysis, empirical 
musicology, and music perception research. These 
insights are of importance for better understanding the 
process of making music as well as affective user reactions 
to music.

6.1 Applications
The better understanding of music performance enables a 
considerable range of applications spanning a multitude 
of different areas including systematic musicology, music 
education, MIR, and computational creativity, leading to a 
new generation of music discovery and recommendation 
systems, and generative music systems.

The most obvious application example connecting 
MPA and MIR is music tutoring software. Such software 
aims at supplementing teachers by providing students 
with insights and interactive feedback by analyzing and 
assessing the audio of practice sessions. The ultimate 
goals of an interactive music tutor are to highlight 
problematic parts of the student’s performance, provide 
a concise yet easily understandable analysis, give specific 
and understandable feedback on how to improve, and 
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individualize the curriculum depending on the student’s 
mistakes and general progress. Various (commercial) 
solutions are already available, exhibiting a similar set of 
goals. These systems adopt different approaches, ranging 
from traditional music classroom settings to games 
targeting a playful learning experience. Examples for 
tutoring applications are SmartMusic,1 Yousician,2 Music 
Prodigy,3 and SingStar.4 However, many of these tools are 
not reliable enough to be used in educational settings. 
More studies are needed to properly evaluate the usability 
of performance assessment systems in real classroom 
environments (Eremenko et al., 2020).

Performance parameters have a long history being 
either explicitly or implicitly part of MIR systems. For 
instance, core MIR tasks such as music genre classification 
and music recommendation systems have a long history 
of utilizing tempo and dynamics features successfully (Fu 
et al., 2011).

Another area which has relied extensively on using 
performance data is the field of generative modeling. Much 
of the recent research has been on generating expressive 
performances with or without a musical score as input. 
While the vast majority of this body of work has focused 
on piano performances (Cancino-Chacón and Grachten, 
2016; Malik and Ek, 2017; Jeong et al., 2019; Jeong et al., 
2019b,a; Oore et al,. 2020; Maezawa et al., 2019), there 
are a few studies focused on other instruments such as 
violin and flute (Wang and Yang, 2019). The common 
thread across these approaches is that they use end-to-
end data-driven techniques to generate the performance 
(either predict note-wise performance features such as 
timing, tempo and dynamics, or directly generate the 
audio) given the score as input. While these methods 
have achieved some success, they mostly operate as black 
boxes, and hence, lack in their ability to either provide 
deeper insights regarding the performance generation 
process or exert any form of explicit control over different 
performance parameters. There have been some attempts 
to alleviate these limitations. For instance, Maezawa et al. 
(2019) tried to learn an abstract representation capturing 
the musical interpretation of the performer. This could 
allow generation of different performances of the same 
piece with varying interpretations. More studies like this 
would allow better modeling of musical performances 
and improving the quality and usability of performance 
generation systems.

6.2 Challenges
Despite such practical applications, there are still many 
open topics and challenges that need to be addressed. The 
main challenges of MPA have been summarized at the end 
of each of the previous sections. The related challenges to 
the MIR community, however, are multi-faceted as well. 
First, the fact that the majority of the presented studies 
use manual annotations instead of automated methods 
should encourage the MIR community to re-evaluate 
the measures of success of their proposed systems if, 
as it appears to be, the outputs lack the robustness or 
accuracy required for a detailed analysis even for tasks 

considered to be ‘solved.’ Second, the missing separation 
of composition and performance parameters when 
framing research questions or problem definitions can 
impact not only interpretability and reusability of insights 
but might also reduce algorithm performance. If, for 
example, a music emotion recognition system does not 
differentiate between the impact of core musical ideas 
and performance characteristics, it will have a harder time 
differentiating relevant and irrelevant information. Thus, 
it is essential for MIR systems to not only differentiate 
between score and performance parameters in the 
system design phase but also analyze their respective 
contributions during evaluation. Third, when examining 
phenomena that are complex and at times ambiguous —
such as ‘expressiveness’— it is imperative to fully define 
the scope of the associated terminology. Inconsistently 
used or poorly defined terms can obfuscate results making 
it more challenging to build on prior work or to propagate 
knowledge across disciplines. Fourth, a greater flow of 
communication between MIR and music perception 
communities would bolster research in both areas. 
However, differing methodologies, tools, terminology, 
and approaches have often created a barrier to such an 
exchange (Aucouturier and Bigand, 2012). One way of 
facilitating this communication between disciplines is to 
maximize the interpretability and reusability of results. In 
particular, acknowledging or addressing the perceptual 
relevance of predictor variables or results, or even explicitly 
pointing to a possible gap in the perceptual literature, 
can aid knowledge transfer by pointing to ‘meaningful’ 
or perceptually-relevant features to focus subsequent 
empirical work. In addition, it would be prudent to ensure 
that any underlying assumptions of perceptual validity 
(linked to methods or results) are made overt and, where 
possible, supported with empirical results. Fifth, lack of 
data continues to be a challenge for both MIR core tasks 
and MPA; a focus on approaches for limited data (McFee 
et al., 2015), weakly labeled data, and unlabeled data (Wu 
and Lerch 2018b) could help address this problem. There 
is, however, a slow but steady growth in the number of 
datasets available for performance analysis, indicating 
growing awareness and interest in this topic. Table 1 lists 
the most relevant currently available datasets for music 
performance research. Note that 22 of the 30 datasets 
listed have been released in the last 5 years.

In conclusion, the fields of MIR and MPA each depend 
on the advances in the other field. In addition, music 
perception and cognition, while not a traditional topic 
within MIR, can be seen as an important linchpin 
for the advancement of MIR systems that depend on 
reliable and diverse perceptual data. Cross-disciplinary 
approaches to MPA bridging methodologies and data 
from music cognition and MIR are likely to be most 
influential for future research. Empirical, descriptive 
research driven by advanced audio analysis is necessary 
to extend our understanding of music and its 
perception, which in turn will allow us to create better 
systems for music analysis, music understanding, and 
music creation.
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Notes
	 1	 MakeMusic, Inc., www.smartmusic.com, last accessed 

04/11/2019.
	 2	 Yousician Oy, www.yousician.com, last accessed 

04/11/2019.
	 3	 The Way of H, Inc., www.musicprodigy.com, last 

accessed 04/11/2019.
	 4	 Sony Interactive Entertainment Europe, www.singstar.

com, last accessed 04/11/2019.
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