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An Interdisciplinary Review of Music Performance
Analysis

Alexander Lerch, Claire Arthur, Ashis Pati and Siddharth Gururani

A musical performance renders an acoustic realization of a musical score or other representation of
a composition. Different performances of the same composition may vary in terms of performance
parameters such as timing or dynamics, and these variations may have a major impact on how a listener
perceives the music. The analysis of music performance has traditionally been a peripheral topic for the
MIR research community, where often a single audio recording is used as representative of a musical work.
This paper surveys the field of Music Performance Analysis (MPA) from several perspectives including the
measurement of performance parameters, the relation of those parameters to the actions and intentions
of a performer or perceptual effects on a listener, and finally the assessment of musical performance.
This paper also discusses MPA as it relates to MIR, pointing out opportunities for collaboration and future

research in both areas.

Keywords: Music Performance Analysis; Survey

1. Introduction

Music, as a performing art, requires a performer or group
of performers to render a musical “blueprint” into an
acoustic realization (Hill, 2002; Clarke, 2002b). This
musical blueprint can, for example, be a score as in the
case of Western classical music, a lead sheet for jazz, or
some other genre-dependent representation describing
the compositional content of a piece of music. The
performers are usually musicians but might also be, e.g., a
computer rendering audio.

The performance plays a major role in how listeners
perceive a piece of music: even if the blueprint is identical
for different renditions, as is the case in Western classical
music, listeners may prefer one performance over another
and appreciate different ‘interpretations’ of the same piece
of music. These differences are the result of the performers’
intentionally or unintentionally interpreting, modifying,
adding to, and dismissing information from the score or
blueprint (for the sake of simplicity, the remainder of this
text will use the terms score and blueprint synonymously).
This constant re-interpretation of music is inherent to the
art form and is a vital and expected component of music.

Formally, musical communication can be described as a
chain as shown in Figure 1: the composer typically only
communicates with the listener through the performer
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who renders the blueprint to convey musical ideas to the
listener (Kendall and Carterette, 1990). The performer
does this by varying musical parameters while leaving
the compositional content untouched. The visualized
model of the communication chain displays a one-
way communication path of information transmission.
There can be, however, flows of information in the other
direction, influencing the performance itself. Such a
feedback path might transport information such as the
instrument’s sound and vibration (Todd 1993), the room
acoustics, (Luizard et al., 2020), and the audience reaction
(Kawase, 2014). Although the recording studio lacks an
audience, a performance can also evolve during arecording
session. Katz (2004) points out that in such a session,
performers will listen to the recording of themselves and
adjust “aspects of style and interpretation.” In addition,
the producer might also have impact on the recorded
performance (Maempel, 2011).

The large variety of performance scenarios makes it
necessary to focus on the common core of all music
performances: the audio signal. While a music performance
can, for example, contain visual information such as
gestures and facial expressions (Bergeron and Lopes,
2009; Platz and Kopiez, 2012; Tsay, 2013), not every music
performance has these cues. A musical robot, for example,
may or may not convey such cues. The acoustic rendition,
however, is the integral part of a music performance
that cannot be missing; simply put, there exists no
music without sound. An audio recording is a fitting
representation of the sound that allows for quantitative
analysis. This audio-focused view should neither imply
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Figure 1: Chain of musical communication from composer to listener. The dotted box disappears for performances that

are not recorded.

that non-audio information cannot be an important
part of a performance nor that non-audio information
cannot be analyzed. The focus on the audio recording of
a performance makes it important to recognize that every
recording contains processing choices and interventions
by the production team with potential impact on the
expressivity of the recording. Maempel (2011) discusses
as main influences in the context of classical music the
sound engineer (dynamics, timbre, panorama, depth) and
the editor (splicing of different tracks, tempo and timing,
pitch). These manipulations and any restrictions of the
recording and distribution medium are part of the audio
to be analyzed and cannot be separated anymore from the
performers’ creation. As the release of a recording usually
has to be pre-approved by the performers it is assumed
that the performers’ intent has not been distorted.
Although the change of performance parameters can
have a major impact on a listener's perception of the
music (Clarke, 2002a, also Section 4), the nature of the
performance parameter variation is often subtle, and
must be evaluated in reference to something; typically
either the same performer and piece at a different time,
different performances of the same piece, or deviations
from a perfectly quantized performance rendered from a
symbolic score representation (e.g., MIDI) without tempo
or dynamics variations. Notice that this reference problem
makes the genre of music for performance analysis biased
towards classical music, as there is commonly an abstract
(i.e., score) representation that easily fills the model of
the quantized version of a piece of music. In addition, the
classical model of performance is based on a finite number
of pre-composed musical works performed by numerous
individuals over time, thus making it a rich resource for
performance analysis. Figure 2 visualizes two example
piano performances of the beginning of Frédéric Chopin'’s
Fantasie in F Minor, Op. 49, where variations in local
tempo, dynamics, and pedaling can easily be identified.
Even in musical traditions that also have scores, such as
jazz, the role of the performer as ‘interpreter’ of the score
is complicated by normative practices such as elaborate
embellishment and improvisation (often to the point
of highly obscuring the original material). Other genres
might completely eliminate the concept of separable
composition and performance. McNeil (2017) argues,
for example, that the distinction between ‘composition’
and ‘improvisation’ cannot capture the essence of
performance creativity in Indian Hindustani music, where
the definition of fixed composed’ material and improvised

Performance A
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Figure 2: Variations in two different performances of
Frédéric Chopin's Fantasie in F Minor, Op. 49 (taken from
the Maestro dataset (Hawthorne et al., 2019). For each
performance, timing and dynamics are shown using the
piano rolls (darker color indicates higher velocity). Pedal
control is shown below the piano roll (darker color indi-
cates increasing usage of the pedal). Visualized excerpts
correspond to the beginning of the piece.

material becomes hard and it might be more meaningful
to refer to seed ideas which grow and expand throughout
the performance.

Although the distinction between score and
performance parameters is less obvious for non-classical
genres of Western music, especially ones without clear
separation between the composer and the performer,
the concept and role of a performer as interpreter of
a composition is still very much present, be it as a live
interpretation of a studio recording or a cover version
of another artist’s song. In these cases, the freedom of
the performers in modifying the score information
is often much higher than it is for classical music —
reinterpreting a jazz standard can, for example, include
the modification of content related to pitch, harmony,
and rhythm.

Formally, performance parameters can be structured in
the same basic categories that we use to describe musical
audio in general: tempo and timing, dynamics, pitch, and
timbre (Lerch, 2012). While the importance of different
parameters might vary from genre to genre, the following
list introduces some mostly genre-agnostic examples to
clarify these performance parameter categories:
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- Tempo and Timing: the score specifies the general
rhythmic content, just as it often contains a tempo
indicator. While the rhythm is often only slightly
modified by performers in terms of micro-timing, the
tempo (both in terms of overall tempo as well as ex-
pressive tempo variation) is frequently seen only as a
suggestion to the performer.

- Dynamics: in most cases, score information on dynam-
ics is missing or only roughly defined. The performers
will vary loudness and highlight specific events with
accents based on their plan for phrasing and tension,
and the importance of certain parts of the score.

- Pitch: the score usually defines the general pitches
to play, but pitch-based performance parameters in-
clude expressive techniques such as vibrato as well as
intentional or unintentional choices for intonation.

- Timbre: as the least specific category of musical pa-
rameters, scores encode timbre often only implicitly
(e.g., instrumentation) while performers can, for ex-
ample, change playing techniques or the choice of
specific instrument configurations (such as the choice
of organ registers).

There exist many performance parameters and playing
techniques that either cannot be easily associated with
one of the above categories or span multiple categories;
examples of such parameters are articulation (legato,
staccato, pizzicato) or forms of ornamentation in Baroque
or jazz music.

One intuitive form of Music Performance Analysis (MPA)
—discussing, criticizing, and assessing a performance
after a concert— has arguably taken place since music
was first performed. Traditionally, however, such reviews
are qualitative and not empirical. While there are a
multitude of approaches to music performance analysis,
and numerous factors shape the insights and outcomes
of such analyses, in this literature review we are only
concerned with quantitative, systematic approaches to
MPA scholarship. However, it is easily acknowledged that
the design of any empirical study and the interpretation
of results could be improved by a careful consideration of
the musicological context (e.g., the choice of edition that a
classical performance is rendered from — see Rink (2003)).
Nevertheless, a detailed discussion of such contexts is
beyond the scope of this article.

Early attempts at systematic and empirical MPA can be
traced back to the 1930s with vibrato and singing analysis
by Seashore (1938) and the examination of piano rolls
by Hartmann (1932). In the past two decades, MPA has
greatly benefited from the advances in audio analysis
made by members of the Music Information Retrieval
(MIR) community, significantly extending the volume of
empirical data by simplifying access to a continuously
growing heritage of commercial audio recordings. While
advances in audio content analysis have had clear impact
on MPA, the opposite is less true. An informal search
reveals that while there have been publications on
performance analysis at ISMIR, the major MIR conference,
their absolute number remains comparably small
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(compare Toyoda et al., 2004; Takeda et al., 2004; Chuan
and Chew, 2007; Sapp, 2007, 2008; Hashida et al., 2008;
Liem and Hanjalic, 2011; Okumura et al., 2011; Devaney
etal.,, 2012; Jure et al., 2012; Van Herwaarden et al., 2014;
Liem and Hanjalic, 2015; Arzt and Widmer, 2015; Page et
al,, 2015; Xia et al., 2015; Bantula et al., 2016; Peperkamp
et al., 2017; Gadermaier and Widmer, 2019; Maezawa et
al,, 2019 with a title referring to “music performance” out
of approximately 1,950 ISMIR papers overall).

Historically, MIR researchers often do not distinguish
between score-like information and performance
information even if the research deals with audio
recordings of performances. For instance, the goal of
music transcription, a very popular MIR task, is usually
to transcribe all pitches with their onset times (Benetos
et al., 2013); that means that a successful transcription
system transcribes two renditions of the same piece of
music differently, although the ultimate goal is to detect
the same score (note that this is not necessarily true
for all genres). Therefore, we can identify a disconnect
between MIR research and performance research that
impedes both the evolution of MPA approaches and
robust MIR algorithms, slows gaining new insights into
music aesthetics, and hampers the development of
practical applications such as new educational tools
for music practice and assessment. This paper aims at
narrowing this gap by introducing and discussing MPA
and its challenges from an MIR perspective. In pursuit
of this goal, this paper complements previous review
articles on music performance research (Sloboda, 1982;
Palmer, 1997; Gabrielsson, 1999, 2003; Goebl et al., 2005)
and expands on Lerch et al. (2019) by integrating non-
classical and non-Western music genres, including a more
extensive number of relevant publications, and clearly
outlining the challenges music performance research is
facing. While performance research has been inclusive
of various musical genres, such as the Jingju music
of the Beijing opera (Zhang et al., 2017; Gong, 2018),
traditional Indian music (Clayton, 2008; Gupta and Rao,
2012; Narang and Rao, 2017) and jazz music (AbeRer et
al,, 2017), the vast majority of studies are concerned with
Western classical music. The focus on Western music can
also be observed in the field of MIR in general, despite
efforts in diversifying the field (Serra, 2014; Tzanetakis,
2014). As mentioned, the reason for the focus on classical
music within MPA may be due to the clear systematic
differentiation between score and performance. This
imbalance means that this overview article will necessarily
emphasize Western classical music while referring to
other musical styles wherever appropriate.

The remainder of this paper is structured as follows.
The following Section 2 presents research on the
objective description, modeling, and visualization of
the performance itself, identifying commonalities and
differences between performances. The subsequent
sections focus on studies taking these objective
performance parameters and relating them to either
the performer (Section 3), the listener (Section 4), or the
assessment of the performer from a listener’s perspective



224

(Section 5). We conclude our overview with a summary on
applications of MPA and final remarks in Section 6.

2. Performance Measurement

A large body of work focuses on an exploratory approach
to analyzing performance recordings and describing
performance characteristics. Such studies typically extract
characteristics such as the tempo curve or histogram
(Repp, 1990; Palmer, 1989; Povel, 1977; Srinivasamurthy
et al., 2017) or loudness curve (Repp, 1998a; Seashore,
1938) from the audio and aim at either gaining general
knowledge on performances or comparing attributes
between different performances/performers based on
trends observed in the extracted data. Additionally, there
are also studies focusing on discovery of general patterns
in performance parameters, which can be useful in
identifying trends such as changes over eras (Ornoy and
Cohen, 2018).

2.1 Tempo, timing, and dynamics

Deviations in tempo, timing, and dynamics are considered
to be some of the most salient performance parameters
and hence have been the focus of various studies in MPA.
While these performance parameters have been studied
in isolation in some instances, we present them together
since there is substantial work aiming to understand their
interrelation.

Close relationships were observed between musical
phrase structure and deviations in tempo and timing
(Povel, 1977; Shaffer, 1984; Palmer, 1997). For example,
tempo changes in the form of ritardandi tend to occur
at phrase boundaries (Palmer, 1989; Lerch, 2009). As a
related structural cue, Chew (2016) proposed the concept
of tipping points in the score, leading to a timing deviation
with extreme pulse variability in the context of Western
classical music performance.

Correlations were observed between timing and
dynamics patterns (Repp, 1996b; Lerch, 2009). Dalla
Bella and Palmer (2004) found that the overall tempo
influences the overall loudness of a performance. There
are also indications that loudness can be linked to pitch
height (Repp, 1996b). Cheng and Chew (2008) analyzed
global phrasing strategies for violin performance using
loudness and tempo variation profiles and found
dynamics to be more closely related to phrasing than
tempo. While the close relation of tempo and dynamics
to structure has been repeatedly verified, Lerch (2009)
did not succeed in finding similar relationships between
structure and timbre properties in the case of string
quartet recordings.

In the context of jazz performances, Wesolowski (2016)
found that both score and performance parameters such
as underlying harmony, pitch interval size, articulation,
and tempo had significant correlations with timing
variations between successive eighth notes. He also found
these parameters correlated with synchronicity between
separate parts of a jazz ensemble. Several researchers
conducted experiments studying swing style jazz (Ellis,
1991; Progler 1995; Collier and Collier 2002; Friberg and
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Sundstrom, 2002). Such studies focused on measuring or
quantifying discrepancies and asynchrony of performers
in order to study what characteristics of jazz performances
made them ‘swing’ (Friberg and Sundstrém, 2002). Ellis
(1991) found that asynchrony of jazz swing performers
to the prevailing meter is positively correlated with the
tempo and consists mainly of delaying attacks. Progler
(1995) noted that participatory asynchrony in swing is
observed and measurable at a subsyntax level. Abefer
et al. (2014a) studied the relationship of note dynamics
in jazz improvisation with other contextual information
such as note duration, pitch, and position in the score.
They used a score-informed music source separation
algorithm to isolate the solo instrument and found that
higher and longer notes tend to be louder, and structural
accents are typically emphasized. Busse (2002) conducted
an experiment to objectively measure deviations in
terms of timing, articulation, and dynamics of jazz swing
performers from mechanical regularity using MIDI-based
‘groove quantization.” He created reference performer
models using the measured performance parameter
deviations and compared them against mechanical or
quantized models. Experts were asked to rate the ‘swing
representativeness’ of the different models. He found that
reference performer models were rated to be representative
of swing whilst similar mechanical models of performance
were rated poorly. Ashley (2002) described timing in jazz
ballad performance as melodic rhythm flexibility over a
strict underlying beat pattern, which is a type of rubato.
He found timing deviations to have strong relationships
with musical structure. Collier and Collier (1994) studied
tempo in corpora of jazz performances. They manually
timed these recordings and found that tempo was
normally (Gaussian) distributed when computed in terms
of metronome markings but not when computed using
note durations. They noted that while jazz performances
are stable in terms of tempo, systematic patterns in timing
variabilities tend to serve expressive functions. lyer (2002)
contrasted micro-timing in African-American music from
techniques in Western classical music such as rubato and
ritardando. Employing an embodied cognition framework,
he argued that the differences are due to the emphasis
of the human body in the cultural aesthetics of African-
American musics.

Studies analyzing musical timing are not only
limited to Western music. Srinivasamurthy et al. (2017)
performed a large-scale computational analysis of
rhythm in Hindustani classical percussion, confirming
and quantifying tendencies pertaining to timing such as
deviations of tempo within a metric cycle (also referred
to as tal). The study demonstrated the value of using
MIR techniques for rhythm analysis of large corpora of
music. Bektas (2005) confirmed the relationship between
prosodic meter ariiz and musical meter usil in Turkish
vocal music and found the existence of an even stronger
concordance between a subset of prosodic patterns called
bahir and usil.

In addition to the studies already presented, there
is a large body of work that focuses on modeling of
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timing, tempo, and dynamics. Section 2.3 discusses such
modeling approaches to performance measurement in
detail.

2.2 Tonal analysis

Pitch-based performance parameters have been analyzed
mostly in the context of single-voiced instruments. For
instance, the vibrato range and rate has been studied
for vocalists (Seashore, 1938; Devaney et al, 2011)
and violinists (Bowman Macleod, 2006; Dimov, 2010).
Regarding intonation, Devaney et al. (2011) found
significant differences between professional and non-
professional vocalists in terms of the size of the interval
between semi-tones.

Studies have also been conducted on the relationship
between pitch and meter in the context of bebop style
jazz (Jarvinen, 1995; and Toiviainen, 2000). These studies
found that measurements of chorus-level tonal hierarchies
match quite closely to rating profiles of chromatic pitches
found in European art music and that metrical structure
plays a role in determining which pitches are emphasized
or de-emphasized. The studies also indicated that there
is no effect of syncopation or polyrhythm on the use of
certain pitches.

Franz (1998) demonstrated the utility of Markov chains
in the analysis of jazz improvisation. He found Markov
chains useful in quantifying the frequency of notes and
patterns of notes which are in turn useful as comparison
tools for musical scale analyses. Furthermore, he noted
that this modeling technique can be useful for stylistic
comparison as well as in developing metrics for style
and creativity. Frieler et al. (2016) proposed an analysis
framework for jazz improvisation based on so-called
‘midlevel units’ (MLU). These are musical units on the
middle level between individual notes and larger form
parts. They hypothesize that MLUs correspond to the
improvisers' playing ideas and musical ideas and propose
a taxonomy system for MLUs. The authors subsequently
study the distribution of occurrences and durations of
MLUs in a large corpus of jazz improvisations. They note
that the most common MLUs used in improvisations
belong to the lick and line categories. They also find that
the distribution of MLU types differs between performers
and styles.

Research on jazz solos has utilized MIR methods
for source separation and pitch tracking to analyze
intonation and other tonal features (AbeRer et al.,
2014c, 2015). AbeRer et al. (2014c) proposed a score-
informed pitch tracking algorithm for analysis. They
analyze distributions of various pitch contour features
to identify patterns between different artists and
instruments. Several contextual parameters such as
relative position of notes in a phrase, beat position in
the bar, etc., are also extracted and correlations between
these parameters and pitch features are studied. They
found statistically significant correlations between the
pitch contour features and contextual features but
most of the correlations had small effect size. AbeRer
et al. (2015) utilized score-based source separation and
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pitch tracking to study intonation in jazz brass and
woodwind solos to identify trends in tuning frequency
over various decades, intonation for different artists,
and properties of vibrato depending on context and
performer.

A survey of computational methods utilized to study
tonality in Turkish Makam music was conducted by Bozkurt
et al. (2014), including research related to the analysis of
tuning frequency and melodic phrases, transcription of
performances, Makamrecognition, as well as rhythmic and
timbral analysis in Makam music. Atli et al. (2015) discuss
the importance of tonic frequency or karar estimation for
Makam music and devise a simple method for the task:
they find that detecting the last note of a performance
recording and estimating the frequency works well for
karar estimation. Hakan et al. (2012) analyzed Turkish ney
performances to identify key aspects of embellishments.
They found that the rate of change of vibrato and ‘pitch
bump’, which measures the deviation of pitch just before
ascending or descending into the next note, were the
key features useful for distinguishing performance styles
across various performers.

Similarly, several researchers have worked on analysis of
melody and tonality in Indian classical music. Ganguli and
Rao (2017) modeled ungrammatical phrases, i.e., phrases
straying away from the predetermined raga, in Hindustani
music performance. They utilized computational
techniques to model the tonal hierarchies and melodic
shapes of different ragas toward that end. Viraraghavan
et al. (2017) analyzed the use of ornamentation known as
gamakas in Carnatic music performances. They find that
the use of gamakas is vital in defining the raga during a
performance.

Chen (2013) developed methods for analysis of
intonation in Beijing opera or Jingju music. The methods,
involving peak distribution analysis of pitch histograms,
validated claims in literature that the fourth degree
is higher, and the seventh degree is lower than the
corresponding pitches in the equally tempered scale.
Chen also found pitch histograms to be good features to
distinguish role types in opera performances. Caro Repetto
et al. (2015) utilized MIR techniques for pitch tracking and
audio feature extraction to compare singing styles of two
Jingju schools, namely the Mei and Cheng schools. Their
experiments quantitatively support observations made
in musicological texts about characteristics such as pitch
register, vibrato, volume/dynamics, and timbre brightness.
In addition, they find other properties not previously
reported; for example, vibrato in Mei tends to be slower
and wider on average than in Cheng. Yang et al. (2015)
developed methods based on filter diagonalization and
hidden Markov models to detect and model vibrato and
portamento in performances of erhu, violin and Jingju
opera vocals. There are studies aiming to understand the
relationship between linguistic tone and melodic pitch
contours in Jingju music by utilizing machine learning
methods such as clustering (Zhang et al., 2015, 2014).
Jingju music utilizes a two-dialect tone system making the
tone-melody relationship complicated.
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2.3 Modeling

While most of the studies mentioned above make use
of statistical methods to extract, summarize, visualize,
and investigate patterns in the performance data,
researchers have also investigated modeling approaches
to better understand performances. Several overview
articles exist covering research on generating expressive
musical performance (Cancino-Chacén et al., 2018; Kirke
and Miranda, 2013; Widmer and Goebl, 2004). In this
subsection, however, we primarily focus on methods that
model performance parameters leading to useful insights,
while ignoring the generative aspect.

Several researchers have attempted to model timing
variations in performances. In early work, Todd (1995)
modeled ritardandi and accelerandi using kinematics
theory, concluding that tempo variation is analogous to
velocity. Li et al. (2017) introduced an approach invariant
to phrase length for analyzing expressive timing. They
utilize Gaussian mixture models (GMMs) to model the
polynomial regression coefficients for tempo curves
instead of directly modeling expressive timing. Liem and
Hanjalic (2011) proposed an entropy-based deviation
measure for quantifying timing in piano performances
and found it to be a good alternative to standard-deviation-
based measures. Grachten et al. (2017) utilized recurrent
neural networks to model timing in performances and
demonstrated the benefits over static models that do
not account for temporal dependencies between score
features. Stowell and Chew (2013) introduced a Bayesian
model of tempo modulation at various time-scales in
performances.

For dynamics modeling, Kosta et al. (2015) applied
and compared two change-point algorithms to detect
dynamics changes in performed music, evaluating them
using the corresponding dynamics markers in the score.
In further research, Kosta et al. (2018) quantified the
relationships between notated and performed dynamics
using a corpus of performed Chopin Mazurkas. Kosta et
al. (2016) applied various machine learning methods
such as decision trees, support vector machines (SVM)
and neural networks to understand the relationship
between dynamics markings and performed loudness.
They find that score-based features are more important
than performer style features for predicting dynamics
markings given performed loudness and vice versa.
Similarly, Marchini et al. (2014) utilized decision trees,
SVMs and k-nearest neighbor classifiers to model and
predict performance features such as intensity, timing
deviations, vibrato extent, and bowing speed of each
note in string quartet performances. They found that
inter-voice attributes played a strong role in models
trained with ensemble recordings versus solo recordings.
Grachten and Widmer (2012) introduced a so-called linear
basis function model which encodes score information
using weighted combinations of a set of basis functions.
They utilize this model to predict and analyze dynamics
in performance. Grachten et al. (2017) extended the
framework with a recurrent model which better captures
temporal relationships in order to improve modeling of
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timing. Cancino-Chacén et al. (2017) performed a large-
scale evaluation of linear, non-linear and temporal models
for dynamics in piano and orchestral performances. These
models utilize various features extracted from the score to
encode structure in dynamics, pitch and rhythm.

An alternative direction in performance modeling
research involves methods to discover rules for
performance (Widmer, 2003). Widmer's ensemble
learning method succeeds in finding simple, and in some
cases novel, rules for music performance. An approach to
modeling expressive jazz performance based on genetic
algorithms was proposed by Ramirez et al. (2008), learning
rules to generate sequences that are best able to fit the
training data.

2.4 Visualization

Many traditional approaches to performance parameter
visualization such as pitch contours (Gupta and Rao, 2012;
AbeRer et al., 2014c), tempo curves (Repp, 1990; Palmer,
1989; Povel, 1977), and scatter plots (Lerch, 2009) are not
necessarily interpretable or easily utilized for comparative
studies. This led researchers to develop other, potentially
more intuitive or condensed forms of visualization that
allow describing and comparing different performances.
The ‘performance worm’, for example, is a pseudo-3D
visualization of the tempo-loudness space that allows the
identification of specific gestures in that space (Langner
and Goebl, 2002; Dixon et al., 2002). Sapp (2007, 2008)
proposed the so-called ‘timescapes’ and ‘dynascapes’
to visualize subsequent similarities of performance
parameters.

The ‘Phenicx’ project explored various ways of
visualizing orchestral music information, including both
score and performance information (Gasser et al., 2015).
Dynagrams and tempograms, for example, are used to
visualize various temporal levels of loudness and tempo
variations, respectively. Dittmar et al. (2018) devised
swingogram representations by analyzing and tracking
the swing ratio implied by the ride cymbal in jazz swing
performance. This visualization enables insights into jazz
improvisation such as the interaction between a soloist
and the drummer.

2.5 Challenges

The studies presented in this section often follow an
exploratory approach; extracting various parameters in
order to identify commonalities or differences between
performances. While this is, of course, of considerable
interest, one of the main challenges is the interpretability
of these results. Just because there is a timing difference
between two performances does not necessarily mean that
this difference is musically or perceptually meaningful.
Without this link, however, results can only provide
limited insights into which parameters and parameter
variations are ultimately important.

The acquisition of data for analysis is another challenge
in MPA research. Goebl et al. (2005) discuss various
methods that have been used to that end, including
special instruments (such as Yamaha Disklaviers, piano
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rolls), hand measurement of performance parameters,
as well as automatic audio analysis tools. All these
methods have potential downsides. For example, the
use of special instruments and sensors excludes the
analysis of performances not recorded on these specific
devices and the associated formats (e.g., MIDI) may have
difficulties representing special playing techniques.
Manual annotation can be time consuming and tedious.
The fact that the majority of studies surveyed here rely on
manually annotated data implies that available algorithms
for automatic performance parameter extraction lack
the reliability and/or accuracy for practical MPA tasks.
This is especially true for ensemble performances
where the polyphonic and poly-timbral nature as
well as timing fluctuations between individual voices
complicate the analysis. As a result of these challenges,
most studies are performed on manually annotated
data with small sample sizes, possibly leading to poor
generalizability of the results. The increasing number of
datasets providing performance data as listed in Table 1,
however, gives hope that this ceases to be an issue in the
future.

3. Performer

While most studies focus on the extraction of performance
parameters or the mapping of these parameters to the
listeners’ perception (see Sections 4 and 5), some investigate
the capabilities, goals, and strategies of performers. A
performance is usually based on an explicit or implicit
performance plan with clear intentions (Clarke, 2002b).
This seems to be the case also for improvised music:
for instance, Dean et al. (2014) could verify clearly
perceivable structural boundaries in free jazz piano
improvisation. There is, as Palmer verified, a clear relation
between reported intentions and objective parameters
related to phrasing and timing of the performance
(Palmer, 1989). Similar relations between the intended
emotionality and loudness and timing measures were
reported in multiple studies (Juslin, 2000; Dillon, 2001,
2003, 2004). For example, projected emotions such as
anger and sadness show significant correlations with
high and low tempo, and high and low overall sound
level, respectively. Moreover, a performer’'s control of
expressive variation has been shown to significantly
improve the conveyance of emotion. For instance, a
study by Vieillard et al. (2012) found that listeners were
better able to perceive the presence of specific emotions
in music when the performer played an ‘expressive’ (as
opposed to a mechanical) rendition of the composition.
This suggests that the performer plays a fairly large role
in communicating an emotional ‘message’ above and
beyond what is communicated through the score alone
(Juslin and Laukka, 2003). In music performed from a
score in particular, the score-based representation might
be thought of as a set of instructions in the sense that
the notational system itself is used to communicate
basic structural information to the performer. However,
as noted by Rink (2003), the performer is not simply a
medium or vessel through which performance directions

227

are carried out, but “what performers do has the potential
to impart meaning and create structural understanding.”

Research by Friberg and Sundstrém (2002) set out to
tackle the question of what makes music ‘swing." Their
approach was to examine the variation in the ‘swing ratio’
between pairs of eighth notes in jazz music, and they
found that it tends to vary as a function of tempo. This
finding has interesting implications for MPA as well as
perceptual experiments. Across performers there is a clear
systematic relation between the stretching of the ratio at
slower tempi and the compressing of the ratio at higher
tempi, such that it approaches a 1:1 ratio at approximately
300 BPM. Interestingly, the duration of the second eighth
note remained fairly constant at approximately 100 ms for
medium to fast tempi, suggesting a practical limit on tone
duration that, as the authors speculate, could be due to
perceptual factors.

Another interesting area of research is performer error.
Repp (1996a) analyzed performers’ mistakes and found
that errors were concentrated in mostly unimportant parts
of the score (e.g., middle voices) where they are harder
to recognize (Huron, 2001), suggesting that performers
intentionally or unintentionally avoid salient mistakes.

3.1 Influences

In addition to the performance plan itself, there are
other influences shaping the performance. Acoustic
parameters of concert halls such as the early decay time
have been shown to impact performance parameters such
as tempo (Scharer Kalkandjiev and Weinzierl, 2013, 2015;
Luizard et al., 2019, 2020). Related work by Repp showed
that pedaling characteristics in piano performance
are dependent on the overall tempo (Repp, 1996c,
1997b).

Other studies investigate the importance of the
feedback of the music instrument to the performer
(Sloboda, 1982); there have been studies reporting on
the effect of deprivation of auditory feedback (Repp,
1999), investigating the performers’ reaction to delayed
or changed auditory feedback (Pfordresher and Palmer,
2002; Finney and Palmer, 2003; Pfordresher, 2005),
or evaluating the role of tactile feedback in a piano
performance (Goebl and Palmer, 2008). In summary, the
different forms of feedback have been found to have
small but significant impact on reproduction accuracy of
performance parameters.

3.2 Challenges

There is a wealth of information about performances that
can be learned from performers. The main challenge of this
direction of inquiry is that such studies have to involve the
performers themselves. This limits the amount of available
data and usually excludes well-known and famous artists,
resulting in a possible lack of generalizability. Depending
on the experimental design, the separation of possible
confounding variables (for example, motor skills, random
variations, and the influence of common performance
rules) from the scrutinized performance data can be a
considerable challenge.
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4. Listener

Every performance will ultimately be heard and processed
by a listener. The listener's meaningful interpretation
of the incoming musical information depends on a
sophisticated network of parameters. These parameters
include both objective (or, at least, measurable) features
that can be estimated from a score or derived from a
performance, as well as subjective and ‘internal’ ones such
as factors shaped by the culture, training, and history
of the listener. Presently, there remain many acoustic
parameters related to music performance where the
listener’s response has not been measured, either in terms
of perceptibility or aesthetic response or both. For this
reason, listener-focused MPA remains one of the most
challenging and elusive areas of research. However, to the
extent that MPA research and its applications depend on
perceptual information (e.g., perceived expressiveness),
or intend to deliver perceptually-relevant output (e.g.,
performance evaluation or reception, similarity ratings),
it is imperative to achieve a fuller understanding of the
perceptual relevance of the manipulation and interaction
of performance characteristics (e.g., tempo, dynamics,
articulation). The subsequent paragraphs provide a brief
overview of the relevant literature on music perception
and MPA, along with some discussion of the relevance of
this information for current and future work in both MPA
and in MIR in general.

4.1 Musical expression

When it comes to listener judgments of a performance,
it remains poorly understood which aspects are most
important, salient, or pertinent for the listener's sense
of satisfaction. According to Schubert and Fabian
(2014), listeners are very concerned with the notion of
‘expressiveness' which isacomplex, multifaceted construct.
Performance expression is commonly defined as “variations
in musical parameters by a signal or instrumentalist”
(Dibben, 2014). In other words, performance expression
implies the intentional application of systematic variation
on the part of the performer. On the other hand, expressive
performance (or ‘expressiveness’) implies a judgment
(either implicit or explicit) on the part of a listener.

As stated by Devaney (2016), however, not all variation
is expressive: “The challenge [...] is determining which
deviations are intentional, which are due to random
variation, and which are due to specific physical constraints
that a given performer faces, such as bio-mechanical
limitations [...]. In regard to physical limitations, these
deviations may be both systematic and observable in
collected performance data, but may not be perceptible to
listeners.” Thus, identifying the variation in a performance
that would be intended as expressive is only the first step.
Discovering which performance characteristics contribute
to an expressive performance requires dissecting what
listeners deem ‘expressive’ as well as understanding the
relation and potential differences between measured and
perceived performance features.

Expressiveness is genre and style dependent, meaning
that the perceived appropriatelevel and style of expression
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in a pop ballad will be different from a jazz ballad, and that
expression in a Baroque piece will be different from that
of a Romantic piece —something that has been referred
to as ‘stylishness’ (Fabian and Schubert, 2009; Kendall
and Carterette, 1990). For example, the timing difference
between the primary melody and the accompaniment
tends to be wider in jazz than in classical music, and there
is evidence that the direction of difference is reversed, i.e.,
the melody leads the accompaniment in classical piano
music (Goebl, 2001; Palmer, 1996) while it follows in the
case of jazz (Ashley, 2002). Similarly, syncopation created
by anticipating the beat is normative in pop genres but
appears to be reversed in jazz music where syncopation
is created by delaying the onset of the melody (Dibben,
2014).

In addition to style-related expression, there is the
perceived amount of expressiveness, which is considered
independent of stylishness (Schubert and Fabian, 2006).
Finally, Schubert and Fabian (2014) distinguish a third
‘layer’ of expressiveness, emotional expressiveness,
which arises from a performer's manipulation of
various features specifically to alter or enhance
emotion. This is distinct from musical expressiveness,
or expressive variation, which more generally refers to
the manipulation of compositional elements by the
performer in order to be ‘expressive’ without necessarily
needing to express a specific emotion. Practically
speaking, however, it may be difficult for listeners to
separate these varieties of expressiveness (Schubert and
Fabian, 2014, p.293), and research has demonstrated that
there are interactions between them (e.g., Vieillard et al.,
2012).

4.2 Expressive variation

Several scholars have made significant advances in
our understanding of the role of timing, tempo, and
dynamic variation on listeners’ perception of music. As
noted in Section 2, the subtle variations in tempo and
dynamics executed by a performer have been shown to
play a large role in highlighting and segmenting musical
structure. For instance, the perception of metrical
structure is largely mediated through changes in timing
and articulation within small structural units such as
the measure, beat, or sub-beat, whereas the perception
of formal structures are largely communicated through
changes across larger segments such as phrases (e.g.,
Sloboda, 1983; Gabrielsson, 1987; Palmer, 1996; Behne
and Wetekam, 1993). An experiment by Sloboda (1983)
found that listeners were better able to identify the
meter of an ambiguous passage when performed by a
more experienced performer. This suggests that even
subtle changes in articulation and timing—more easily
executed by an expert performer—play an important role
in communicating structural information to the listener.
Through measuring the differences in the performers’
expressive variations, Sloboda identified dynamics and
articulation —in particular, a tenuto articulation— as the
most important features for communicating which notes
were accented.
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The extent to which a listener's musical expectations
align with a performer's expressive variations appears
an important consideration. For example, because of
the predictable relation between timing and structural
segmentation, it has been demonstrated that listeners
find it difficult to detect timing (and duration) deviations
from a ‘metronomic’ performance when the pattern and
placement of those deviations are stylistically typical
(Repp, 1990, 1992; Ohriner, 2012). Likewise, Clarke
(1993) found pianists able to more accurately reproduce a
performance when the timing profile was ‘normative’ with
regards to the musical structure, and also found listeners’
aesthetic judgments to be highest for those performances
with the original timing profiles compared with those that
were inverted or altered.

In addition to communicating structural information
to the listener, performance features such as timing
and dynamics have also been studied extensively for
their role in contributing to a perceived ‘expressive’
performance (see Clarke, 1998; Gabrielsson, 1999). For
instance, a factor analysis by Schubert and Fabian (2014)
examined the features and qualities that may be related
to perceived expressiveness, finding that dynamics had
the highest impact on the factor labeled ‘emotional
expressiveness.” Recent work by Battcock and Schutz
(2019) showed attack rate to be the most important
predictor of intensity (or ‘arousal” in terms of two-
dimensional models of emotion). While this work was not
strictly performance analysis since the authors measured
elements that correspond to fixed directions from a
score (e.g., mode; pitch height), the authors do analyze
attack rate, which is related to timing. Specifically, the
authors point out that understanding the role of timing
is confounded by the fact that it encompasses several
distinct musical properties such as tempo and rhythm.
Although the authors do not attempt to segregate these
phenomena (tempo and rhythm) in their perceptual
experiments, it is clear that for a performer, adjusting
the tempo (globally or locally) would influence the
attack rate, and therefore have an impact on perceived
intensity.

The relation between changes in various expressive
parameters and their effect on perceived tension
ratings has been fairly well studied but with conflicting
results. Krumhansl (1996) found that in an experiment
comparing an original performance to versions with
flat dynamics, flat tempo, or both, listeners’ continuous
tension ratings were not affected, implying that tension
was primarily conveyed by the melodic, harmonic, and
durational elements central to the composition (rather
than the performance). A similar result was reported by
Farbood and Upham (2013) where repetitions of the same
verse across a single performance —as well as a harmonic
reduction of it— were found to produce strongly correlated
tension ratings. However, Gingras et al. (2016) studied the
relation between musical structure, expressive variation,
and listeners’ ratings of musical tension, and found that
variations in expressive timing were most predictive of
listeners’ tension ratings.
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It is equally important to empirically test assumptions
about the perceptual effects of expressive variation.
For instance, some aspects of so-called ‘micro-timing’
variation —defined as small, systematic, intentional
deviations in timing—have been debated with regard to
their perceptual effects. In particular, micro-timing has
been suggested as one of the principle contributors to the
perception of ‘groove’ (lyer, 2002; Roholt, 2014). In fact,
there is a sizable portion of literature dedicated to this
phenomenon, and the role of micro-timing in generating
embodied cognitive responses (Dibben, 2014). However,
Davies et al. (2013) parametrically varied the amount of
micro-timing in certain jazz, funk, and samba rhythm
patterns, and, contrary to popular belief, found that
systematic micro-timing generally led to decreased ratings
of perceived groove, naturalness, and liking. Similarly,
Frithauf et al. (2013) found that the highest ratings of
perceived ‘groove quality’ were given to drum patterns that
were perfectly quantized, and that increasing systematic
micro-timing (by shifting either forwards or backwards),
resulted in lower quality ratings.

While the role of expressive variation in timbre and
intonation has generally been less studied, there has been
substantial attention given to the expressive qualities of
the singing voice, where these parameters are especially
relevant (see Sundberg, 2018). For instance, Sundberg
et al. (2013), found that a sharpened intonation at a
phrase climax contributed to increased perception
of expressiveness and excitement, and Siegwart and
Scherer (1995) found that listener preferences were
correlated with certain spectral components such as the
relative strength of the fundamental and the value of the
spectral centroid. Similarly, the role of ornamentation
in contributing to perceived expression, skill, or overall
quality, has been largely overlooked, especially as it relates
to music outside of the classical canon. Some exceptions
include research showing subjective preferences for an
idealized pitch contour and timing profile of the Indian
classical music ornament Gamak (Gupta and Rao, 2012),
and, in pop music, the expressive and emotional effects
of portamento (or pitch slides’), as well as the so-called
‘noisy’ sounds of the voice, have been theorized to be of
strong importance in generating an emotional response
(Dibben, 2014). In the latter case, no actual perceptual
experiments have been conducted to investigate this
claim, however, it is consistent with ethological research
on the role of vocalizations and sub-vocalizations in
affective communication (Huron, 2015).

The reason why expressive variation is so enjoyable
for listeners remains largely an open research question.
Expressive variation is assumed to be the most important
cue to a listener that they are hearing a uniquely human
performance and is regularly hailed as the key component
in communicating an aesthetically pleasing performance.
As mentioned above, its role appears to go beyond
bolstering the communication of musical structure. And, as
pointed out by Repp, even a computerized or metronomic
performance will contain grouping cues (Repp, 1998b).
However, one prominent theory suggests that systematic
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performance deviations (such as tempo) may generate
aesthetically pleasing expressive performances in part
due to their exhibiting characteristics that mimic natural
motion in the physical world (Gjerdingen, 1988; Todd,
1992; Repp, 1993; Todd, 1995; van Noorden and Moelants,
1999) or human movements or gestures (Ohriner, 2012;
Broze 111, 2013). For instance, Friberg and Sundberg (1999),
suggested that the shape of final ritardandi matched the
velocity of runners coming to a stop and Juslin (2003)
includes ‘motion principles’ in his model of performance
expression.

4.3 Mapping and Predicting Listener Judgments

In order to isolate listeners’ perception of parameters
that are strictly performance-related, several scholars
have investigated listeners’ judgments across multiple
performances of the same excerpt of music (e.g., Repp,
1990; Fabian and Schubert, 2008). A less-common
technique relies on synthesized constructions or
manipulations of performances, typically using some
kind of rule-based system to manipulate certain musical
parameters (e.g., Repp, 1989; Sundberg, 1993; Clarke,
1993; Repp, 1998b), and frequently making use of
continuous data collection measures (e.g., Schubert and
Fabian, 2014).

From these studies, it appears that listeners (especially
‘trained’ listeners) are capable not only of identifying
performance characteristics such as phrasing, articulation,
and vibrato, but that they are frequently able to identify
them in a manner that is aligned with the performer’s
intentions (e.g., Nakamura, 1987; Fabian and Schubert,
2009). However, while listeners may be able to identify
performers’ intentions, they may not have the perceptual
acuity to identify certain features with the same precision
allowed by acoustic measures. For instance, a study by
Howes et al. (2004) showed there was no correlation
between measured and perceived vibrato onset
times. Similarly, Geringer (1995) found that listeners
consistently identified increases in intensity (crescendos)
with a greater perceived magnitude of contrast than the
decreases in intensity (decrescendos) regardless of the
actual magnitude of change. This suggests that there
are some measurable performance parameters that may
not map well to human perception. For example, an
objectively measurable difference between a ‘deadpan’
and ‘expressive’ performance does not necessarily
translate to perceived expressivity, especially if the changes
in measured performance parameters are structurally
normative, as discussed in Section 4.2. Two related papers,
by Lietal. (2015) and Sulem et al. (2019), describe research
attempting to better understand the communication
chain from score interpretation to performance and
performance to perception, respectively. The former
attempted to match quantitative acoustic measures
with expressive musical terms (commonly used in score
directions as the principal means of communicating
expressive instruction), while the latter asked performers
to match the same expressive musical terms in terms of
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their perceived emotion along a common dimensional
model of emotion (i.e., Russell, 1980). This work lays the
foundation for future research to empirically examine the
full chain of communication; in attempting to manipulate
the same acoustic measurements it may be possible to
predict perceived musical and emotional correlates.

An important but rarely discussed consideration is
the relation between observed differences in a model
and the perceptual evaluation of those differences by a
listener. For instance, Dixon et al. (2006) experimented
with various methods for extracting perceived tempo
information in relation to expressively-performed
excerpts with an emphasis on some of the assumptions of
beat-tracking algorithms. They discuss the presumption
that what is desirable in a beat-tracking model is typically
to accurately mark what was performed rather than
what was perceived, even though the two may differ. In
particular, they note that the perceived beat is smoother
than the performance data would indicate. Busse
(2002) evaluated expert listener judgments of the
optimal ‘swing style’ of performed jazz piano melodies
that were either unmodified, or modified according to
one of four ‘derived’ models. The first derived model
altered parameters (durations, onsets, and velocities)
according to performer averages, whereas the other three
derived ‘mechanical’ models had the same parameters
fixed by simple ratio relationships. Unsurprisingly, the
unaltered and derived models were generally preferred
to the mechanical models. (It is well known that some
randomness is required in order for a performance to
sound convincingly human, and various jitter functions
have been implemented in computer music software
for this reason since the 1980s.) Despite that one
might predict human preference for one of the original
(performed) melodies, several of the derived models
were not rated statistically different from the original
melodies, suggesting that the averaged parameter values
created a realistic model. However, the parameters of the
unmodified originals were not reported nor compared
against each other or those of the derived models, making
it impossible to examine any difference thresholds across
the measured parameters in terms of their impact on
the swing ratings. Devaney (2016) also compared model
classification against human classification using a
singer-identification task to explore differences between
inter-singer variability and intra-singer similarity across
different performance parameters. In general, listeners
performed the singer identification task better than
chance but far below the abilities of the computational
model. However, there were some similarities between the
model parameters and the features reported by listeners
as important determinants of their classification (e.g.,
vibrato, pitch stability, timbre, breathiness, intonation).
Furthermore, the same pair of singers that ‘confused’
the model were the same two conflated by listeners.
These experiments represent excellent examples from
a scarce pool of research attempting to bridge MIR
and cognitive approaches to performance research.
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However, only a comparison of systematic manipulations
between contrived stimuli will allow sufficient control
over the individual parameters necessary to come
to definitive conclusions about the perceptibility of
variations in performance and their aesthetic value for
performance.

Given a weak relation between a measured parameter
and listeners’ perception of that parameter, another
important question arises: is the parameter itself not
useful in modeling human perception, or is the metric
simply inappropriate? For example, there are many
aspects of music perception that are known to be
categorical (e.g., pitch) in which case a continuous metric
would not work well in a model designed to predict
human ratings.

Similarly, there is the consideration of the role of
the representation and transformation of a measured
parameter for predicting perceptual ratings. This question
was raised by Timmers (2005), who examined the
representation of tempo and dynamics that best predicted
listener judgments of musical similarity. This study found
that, while most existing models rely on normalized
variations of tempo and dynamics, the absolute tempo
and the interaction of tempo and loudness were better
predictors.

Finally, there are performance features that are either
not captured in the audio signal or else not represented
in a music performance analysis that may well contribute
to a listener's perception. For instance, if judgments of
perception are made in a live setting, then many visual
cues —such as performer movement, facial expression,
or attire— will be capable of altering the listener's
perception (Huang and Krumhansl, 2011; Juchniewicz,
2008; Wapnick et al., 2009; Livingstone et al., 2009; Silvey,
2012). Importantly, visual information such as performer
gesture and movement may contribute to embodied
sensorimotor engagement, which is thought to be an
essential component of music perception (e.g., Leman and
Maes, 2014; Bishop and Goebl, 2018), and could therefore
be influential on ratings of performance aesthetics and/or
musical expression.

Clearly, the execution of multiple performance
parameters is important for the perception of both small-
scaleand large-scale musicalstructures,and appearsto have
alarge influence over listeners’ perception and experience
of the emotional and expressive aspects of a performance.
Since the latter appears to carry great significance for
both MPA and music perception research, it suggests that
future work ought to focus on disentangling the relative
weighting of the various features controlled by performers
that contribute to an expressive performance. Since it is
frequently alluded to that a performer’s manipulation of
musical tension is one of the strongest contributors to an
expressive performance, further empirical research must
attempt to systematically break down the concept of
tension as a high-level feature into meaningful collections
of smaller, well-defined features that would be useful for
MPA.

231

4.4 Challenges

The research surveyed in this section highlights the
importance of human perception in MPA research,
especially as it pertains to the communication of emotion,
musical structure, and creating an aesthetically pleasing
performance. In fact, the successful modeling of perceptually
relevant performance attributes, such as those that mark
‘expressiveness’, could have a large impact not only for MPA
but for many other areas of MIR research, such as computer-
generated performance, automatic accompaniment, virtual
instrument design and control, or robotic instruments
and HCI (see, for example, the range of topics discussed
by Kirke and Miranda (2013)). A major obstacle impeding
research in this area is the inability to successfully isolate
(and therefore understand) the various performance
characteristics that contribute to a so-called ‘expressive’
performance from a listener's perspective. Existing literature
reviews on the topic of MPA have not been able to shed
much light on this problem, in part because researchers
frequently disagree on (or conflate) the various definitions
of ‘expressive,” or else findings appear inconsistent across
the research, likely as a result of different methodologies,
types of comparisons, or data. As noted by Devaney (2016),
combining computational and listening experiments could
lead to a better understanding of which aspects of variation
are important to observe and model. Careful experimental
design and/or meta-analyses across both MPA and cognition
research, as well as cross-collaboration between MIR and
music cognition researchers, may therefore prove fruitful
endeavors for future research.

5. Performance Assessment

Assessment of musical performances deals with providing
a rating of a music performance with regard to specific
aspects of the performance such as accuracy, expressivity,
and virtuosity. Performance assessment is a critical and
ubiquitous aspect of music pedagogy: students rely on
regular feedback from teachers to learn and improve skills,
recitals are used to monitor progress, and selection into
ensembles is managed through competitive auditions. The
performance parameters on which these assessments are
based are not only subjective but also ill-defined, leading
to large differences in subjective opinion among music
educators (Thompson and Williamon, 2003; Wesolowski
et al., 2016). However, other studies have shown that
humans tend to rate prototypical (average) performances
higher than individual performances (Repp, 1997a; Wolf
et al., 2018). This might indicate that performances are
rated based on some form of perceived distance from
an ‘ideal’ performance. Apart from music education,
assessment of performances is also an important area
of focus for the evaluation of computer-generated
music performances (Bresin and Friberg, 2013) where
researchers have primarily focused on listening studies to
understand the effect of musical knowledge and biases on
rating performances (De Poli et al., 2014) and the degree
to which computer generated performances stack up
against those by humans (Schubert et al., 2017).
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Figure 3: Schematic showing the comparison between different approaches for music performance assessment.

Work within assessment-focused MPA deals with
modeling how humans assess a musical performance.
The goal is to increase the objectivity of performance
assessments (McPherson and Thompson, 1998) and to build
accessible and reliable tools for automatic assessment.
While this might be considered a subset of listener-focused
MPA, its importance to MPA research and music education
warrants a tailored review of research in this area.

Over the last decade, several researchers have worked
towards developing tools capable of automatic music
performance assessment. These can be loosely categorized
based on (i) the parameters of the performance that are
assessed, and (ii) the technique/method used to design
these systems.

5.1 Assessment parameters

Tools for performance assessment evaluate one or more
performance parameters typically related to the accuracy
of the performance in terms of pitch and timing (Wu et
al., 2016; Vidwans et al., 2017; Pati et al., 2018; Luo, 2015),
or quality of sound (timbre) (Knight et al., 2011; Romani
Picas et al., 2015; Narang and Rao, 2017). In building
an assessment tool, the choice of parameters may
depend on the proficiency level of the performer being
assessed. For example, beginners will benefit more from
feedback in terms of low-level parameters such as pitch
or rhythmic accuracy as opposed to feedback on higher-
level parameters such as articulation or expression.
Assessment parameters can also be specific to culture
or the musical style under consideration, for example,
in the case of Indian classical music the nature of pitch
transitions or gamakas plays an important role (Gupta
and Rao, 2012), while correct pronunciation of syllables
is a strict requirement for Chinese Jingju music (Gong,
2018).

Assessment tools can also vary based on the granularity
of assessments. Tools may simply classify a performance
as ‘good’ or ‘bad’ (Knight et al., 2011; Nakano et al.,
2006), or grade it on a scale, e.g., from 1 to 10 (Pati et
al,, 2018). Systems may provide fine-grained note-by-note
assessments (Romani Picas et al., 2015; Schramm et al.,
2015) or analyze entire performances and report a single
assessment score (Nakano et al., 2006; Pati et al., 2018;
Huang and Lerch, 2019).

5.2 Assessment methods

While different methods have been used to create
performance assessment tools, the common approach
has been to use descriptive features extracted from the
audio recording of a performance, based on which a
classifier predicts the assessment. This approach requires
availability of performance data (recordings) along with
human (expert) assessments for the rated performance
parameters.

The level of sophistication of classifiers was limited
especially for early attempts, in which classifiers such as
Support Vector Machines were used to predict human
ratings. In these systems, the descriptive features became
an important aspect of the system design. In some
approaches, standard spectral and temporal features such
as spectral centroid, spectral flux, and zero-crossing rate
were used (Knight et al., 2011). In others, features aimed
at capturing certain aspects of music perception were
hand-designed using either musical intuition or expert
knowledge (Nakano et al., 2006; AbeRer et al., 2014b;
Romani Picas et al., 2015; Li et al., 2015). For instance,
Nakano et al. (2006) used features measuring pitch
stability and vibrato as inputs to a simple classifier to rate
the quality of vocal performances. Several studies also
attempted to combine low-level audio features with hand-
designed feature sets (Luo, 2015; Wu et al., 2016; Vidwans
etal., 2017), as well as incorporating information from the
musical score or reference performance recordings into
the feature computation process (Devaney et al., 2012;
Mayor et al., 2009; Vidwans et al., 2017; Bozkurt et al.,
2017; Molina et al., 2013; Falcao et al., 2019).

Recent methods, however, have transitioned towards
using advanced machine learning techniques such as
sparse coding (Han and Lee, 2014; Wu and Lerch, 2018c,a)
and deep learning (Pati et al., 2018). Contrary to earlier
methods which focused on hand-designing musically
important features, these techniques input raw data
(usually in the form of pitch contours or spectrograms)
and train the models to automatically learn meaningful
features so as to accurately predict the assessment ratings.

In some ways, this evolution in methodology has
mirrored that of other MIR tasks: there has been a
gradual transition from feature design to feature learning
(compare Figure 3). Feature design and feature learning
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have an inherent trade-off. Learned features extract
relevant information from data which might not be
represented in the hand-crafted feature set. This is evident
from their superior performance at assessment modeling
tasks (Wu and Lerch, 2018a; Pati et al., 2018). However,
this superior performance comes at the cost of low
interpretability. Learned features tend to be abstract and
cannot be easily understood. Custom-designed features,
on the other hand, typically either measure a simple low-
level characteristic of the audio signal or link to high-level
semantic concepts such as pitch or rhythm which are
intuitively interpretable. Thus, such models allow analysis
that can aid in the interpretation of semantic concepts for
music performance assessment. For instance, Gururani
et al. (2018) analyzed the impact of different features on
an assessment prediction task and found that features
measuring tempo variations were particularly critical, and
that score-aligned features performed better than score-
independent features.

5.3 Challenges

In spite of several attempts across varied performance
parameters using different methods, the important
features for assessing music performances remain
unclear. This is evident from the average accuracy of
these tools in modeling human judgments. Most of
the presented models either work well only for very
select data (Knight et al, 2011) or have comparably
low prediction accuracies (Vidwans et al., 2017; Wu et
al., 2016), rendering them unusable in most practical
scenarios (Eremenko et al., 2020). While this may be
partially attributed to the subjective nature of the task
itself, there are several other factors which have limited
the improvement of these tools. First, most of the models
are trained on small task-specific or instrument-specific
datasets that might not reflect noisy real-world data. This
reduces the generalizability of these models. The problem
becomes more serious for data-hungry methods such
as deep learning which require large amounts of data
for training. The larger datasets (>3000 performances)
based on real-world data are either not publicly available
(for example, the FBA dataset (Pati et al., 2018)) or only
provide intermediate representations such as pitch
contours (for example, the MAST melody dataset (Bozkurt
et al., 2017)). Thus, more efforts are needed towards
creating and releasing larger performance datasets for
the research community. Second, the distribution of
ground-truth (expert) ratings given by human judges,
in many datasets, skewed towards a particular class or
value (Gururani et al., 2018). This makes it challenging
to train unbiased models. Finally, the performance
parameters required to adequately model a performance
are not well understood. While the typical approach is
to train different models for different parameters, this
approach necessitates availability of performance data
along with expert assessments for all these parameters.
On many occasions, such assessments are either not
available or are costly to obtain. For instance, while
the MAST rhythm dataset (Falcao et al., 2019) contains
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performance recordings (and pass/fail assessment
ratings) for around 1000 students, the finely annotated
(on a 4-point scale) version of the same dataset contains
only 80 performances. An interesting direction for
future research might consider leveraging models which
are successful at assessing a few parameters (and/or
instruments) to improve the performance of models for
other parameters (and/or instruments). This approach,
usually referred to as transfer learning, has been found to
be successful in other MIR tasks (Choi et al., 2017).

In addition to the data-related challenges, there are
several other challenging problems for MIR researchers
interested in this domain. Better techniques need to be
developed to factor the score (or reference) information
into the assessments. So far, this has been accomplished
by either using dynamic time warping (DTW) based
methods (Vidwans et al., 2017; Bozkurt et al., 2017,
Molina et al., 2013) to compute distance-based features
between the reference and the performance or by
computing vector similarity between features extracted
from the performance and the reference (Falcao et al,
2019). However, expressive performances are supposed
to deviate from the score and simple distance-based
features may fail to adequately capture the nuances. The
problem of how to incorporate this information into
the assessment computation process remains an open
problem.

Another area which requires attention from researchers
lies in improving the ability to interpret and understand
the features learned by end-to-end models. This will
play an important role in improving assessment tools.
Interpretability of neural networks is still an active area
of research, and performance assessment is an excellent
testbed for developing such methods.

6. Conclusion

The previous sections outlined insights gained by MPA
at the intersection of audio content analysis, empirical
musicology, and music perception research. These
insights are of importance for better understanding the
process of making music as well as affective user reactions
to music.

6.1 Applications

The better understanding of music performance enables a
considerable range of applications spanning a multitude
of different areas including systematic musicology, music
education, MIR, and computational creativity, leading to a
new generation of music discovery and recommendation
systems, and generative music systems.

The most obvious application example connecting
MPA and MIR is music tutoring software. Such software
aims at supplementing teachers by providing students
with insights and interactive feedback by analyzing and
assessing the audio of practice sessions. The ultimate
goals of an interactive music tutor are to highlight
problematic parts of the student’s performance, provide
a concise yet easily understandable analysis, give specific
and understandable feedback on how to improve, and
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individualize the curriculum depending on the student’s
mistakes and general progress. Various (commercial)
solutions are already available, exhibiting a similar set of
goals. These systems adopt different approaches, ranging
from traditional music classroom settings to games
targeting a playful learning experience. Examples for
tutoring applications are SmartMusic,' Yousician,? Music
Prodigy,® and SingStar.* However, many of these tools are
not reliable enough to be used in educational settings.
More studies are needed to properly evaluate the usability
of performance assessment systems in real classroom
environments (Eremenko et al., 2020).

Performance parameters have a long history being
either explicitly or implicitly part of MIR systems. For
instance, core MIR tasks such as music genre classification
and music recommendation systems have a long history
of utilizing tempo and dynamics features successfully (Fu
etal., 2011).

Another area which has relied extensively on using
performance data is the field of generative modeling. Much
of the recent research has been on generating expressive
performances with or without a musical score as input.
While the vast majority of this body of work has focused
on piano performances (Cancino-Chacén and Grachten,
2016; Malik and Ek, 2017; Jeong et al., 2019; Jeong et al.,
2019b,a; Oore et al,. 2020; Maezawa et al., 2019), there
are a few studies focused on other instruments such as
violin and flute (Wang and Yang, 2019). The common
thread across these approaches is that they use end-to-
end data-driven techniques to generate the performance
(either predict note-wise performance features such as
timing, tempo and dynamics, or directly generate the
audio) given the score as input. While these methods
have achieved some success, they mostly operate as black
boxes, and hence, lack in their ability to either provide
deeper insights regarding the performance generation
process or exert any form of explicit control over different
performance parameters. There have been some attempts
to alleviate these limitations. For instance, Maezawa et al.
(2019) tried to learn an abstract representation capturing
the musical interpretation of the performer. This could
allow generation of different performances of the same
piece with varying interpretations. More studies like this
would allow better modeling of musical performances
and improving the quality and usability of performance
generation systems.

6.2 Challenges

Despite such practical applications, there are still many
open topics and challenges that need to be addressed. The
main challenges of MPA have been summarized at the end
of each of the previous sections. The related challenges to
the MIR community, however, are multi-faceted as well.
First, the fact that the majority of the presented studies
use manual annotations instead of automated methods
should encourage the MIR community to re-evaluate
the measures of success of their proposed systems if,
as it appears to be, the outputs lack the robustness or
accuracy required for a detailed analysis even for tasks
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considered to be ‘solved.’” Second, the missing separation
of composition and performance parameters when
framing research questions or problem definitions can
impact not only interpretability and reusability of insights
but might also reduce algorithm performance. If, for
example, a music emotion recognition system does not
differentiate between the impact of core musical ideas
and performance characteristics, it will have a harder time
differentiating relevant and irrelevant information. Thus,
it is essential for MIR systems to not only differentiate
between score and performance parameters in the
system design phase but also analyze their respective
contributions during evaluation. Third, when examining
phenomena that are complex and at times ambiguous —
such as ‘expressiveness'— it is imperative to fully define
the scope of the associated terminology. Inconsistently
used or poorly defined terms can obfuscate results making
it more challenging to build on prior work or to propagate
knowledge across disciplines. Fourth, a greater flow of
communication between MIR and music perception
communities would bolster research in both areas.
However, differing methodologies, tools, terminology,
and approaches have often created a barrier to such an
exchange (Aucouturier and Bigand, 2012). One way of
facilitating this communication between disciplines is to
maximize the interpretability and reusability of results. In
particular, acknowledging or addressing the perceptual
relevance of predictor variables or results, or even explicitly
pointing to a possible gap in the perceptual literature,
can aid knowledge transfer by pointing to ‘meaningful’
or perceptually-relevant features to focus subsequent
empirical work. In addition, it would be prudent to ensure
that any underlying assumptions of perceptual validity
(linked to methods or results) are made overt and, where
possible, supported with empirical results. Fifth, lack of
data continues to be a challenge for both MIR core tasks
and MPA; a focus on approaches for limited data (McFee
et al., 2015), weakly labeled data, and unlabeled data (Wu
and Lerch 2018b) could help address this problem. There
is, however, a slow but steady growth in the number of
datasets available for performance analysis, indicating
growing awareness and interest in this topic. Table 1 lists
the most relevant currently available datasets for music
performance research. Note that 22 of the 30 datasets
listed have been released in the last 5 years.

In conclusion, the fields of MIR and MPA each depend
on the advances in the other field. In addition, music
perception and cognition, while not a traditional topic
within MIR, can be seen as an important linchpin
for the advancement of MIR systems that depend on
reliable and diverse perceptual data. Cross-disciplinary
approaches to MPA bridging methodologies and data
from music cognition and MIR are likely to be most
influential for future research. Empirical, descriptive
research driven by advanced audio analysis is necessary
to extend our understanding of music and its
perception, which in turn will allow us to create better
systems for music analysis, music understanding, and
music creation.
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Notes
! MakeMusic, Inc., www.smartmusic.com, last accessed
04/11/2019.
2 Yousician Oy, www.yousician.com, last accessed
04/11/2019.

* The Way of H, Inc, www.musicprodigy.com, last
accessed 04/11/2019.

4 Sony Interactive Entertainment Europe, www.singstar.
com, last accessed 04/11/2019.
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