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Abstract

The paper describes basic research in the area of ma-
chine learning and musical expression. A first step
towards automatic induction of multi-level models of
expressive performance (currently only tempo and dy-
namics) from real performances by skilled pianists is
presented. The goal is to learn to apply sensible tempo
and dynamics ‘shapes’ at various levels of the hierar-
chical musical phrase structure. We propose a general
method for decomposing given expression curves into
elementary shapes at different levels, and for separat-
ing phrase-level expression patterns from local, note-
level ones. We then present a hybrid learning system
that learns to predict, via two different learning al-
gorithms, both note-level and phrase-level expressive
patterns, and combines these predictions into complex
composite expression curves for new pieces. Experi-
mental results indicate that the approach is generally
viable; however, we also discuss a number of severe
limitations that still need to be overcome in order to ar-
rive at truly musical machine-generated performances.

1 Introduction

The work described in this paper is another step in
a long-term research endeavour that aims at building
quantitative models of expressive music performance
via Artificial Intelligence and, in particular, inductive
machine learning methods (Widmer 2001c). This is to
be regarded as basic research. We do not intend to en-
gineer computer programs that generate music perfor-
mances that sound as human-like as possible. Rather,
our goal is to investigate to what extent a machine can
automatically build, via inductive learning from ‘real-
world’ data (i.e., real performances by highly skilled
musicians), operational models of certain aspects of
performance (e.g., predictive models of tempo, timing,
dynamics, etc.). By analysing the models induced by
the machine, we hope to get new insights into funda-
mental principles underlying the complex phenomenon
of expressive music performance, and in this way con-
tribute to the growing body of scientific knowledge

about performance (see (Gabrielsson 1999) for an ex-
cellent overview of current knowledge in this area).

Previous research has shown that computers can
indeed find and describe interesting and useful regu-
larities at the level of individual notes. Using a new
machine learning algorithm (Widmer 2001a), we suc-
ceeded in discovering a small set of simple, robust, and
highly general rules that predict a substantial part of the
note-level choices of a performer (e.g., whether he will
shorten or lengthen a particular note) with high pre-
cision (Widmer 2001b). However, it became equally
clear (actually, it was clear from the outset) that this
low level of single notes is far from sufficient as a basis
for a complete model of expressive performance, and
that these note-level models must be complemented
with models of expression at higher levels of musical
organization (e.g., the level of phrases).

The work presented here is a first preliminary step
in this direction. We describe a system that learns to
predict elementary tempo and dynamics ‘shapes’ at dif-
ferent levels of the hierarchical musical phrase struc-
ture, and combines these predictions with local tim-
ing and dynamics effects predicted by learned note-
level models. To do this, the learning system must
first be able to decompose given expression curves into
elementary patterns that can be associated with indi-
vidual phrases (at different phrase levels), in order to
obtain meaningful training examples for phrase-level
learning, and to separate phrase-level effects from lo-
cal note-level effects (which will be learned by a sepa-
rate learning algorithm). Likewise, we need a strategy
for combining expressive shapes predicted at different
levels into one final composite expression curve.

In the following, we describe our current solution
to the problems of expression curve decomposition
and re-combination and present a first prototype sys-
tem that combines two types of learning algorithms: a
simple nearest neighbor algorithm that predicts phrase-
level expressive shapes in new pieces by ‘analogy’ to
shapes identified in similar phrases in other pieces, and
a rule learning algorithm that learns prediction rules
for note-level effects from the ‘residuals’ that cannot
be attributed to the phrase structure by the expression



decomposition algorithm. Experiments with perfor-
mances of various sections of Mozart piano sonatas
show that the approach is viable in principle.

However, our approach still suffers from a number
of severe limitations, and these will be discussed in the
final section of this paper.

2 Multilevel Decomposition of
Expression Curves

Input to our learning system are the scores of musi-
cal pieces plus measurements of the tempo and dynam-
ics variations applied by a pianist in a particular perfor-
mance. These variations are given in the form oftempo
anddynamics curvesand represent the local tempo and
the relative loudness of each melody note of the piece,
respectively. Both tempo and loudness are represented
as multiplicative factors, relative to the average tempo
and dynamics of the piece. For instance, a tempo indi-
cation of 1.5 for a note means that the note was played
1.5 times as fast as the average tempo of the piece, and
a loudness of 1.5 means that the note was played 50%
louder than the average loudness of all melody notes.

In addition, the system is given information about
the hierarchical phrase structureof the pieces, cur-
rently at four levels of phrasing. Phrase structure anal-
ysis is currently done by hand, as no reliable algorithms
are available for this task.

Given an expression (dynamics or tempo) curve,
the learner is first faced with the problem of extracting
the training examplesfor phrase-level and note-level
learning. That is, the complex curve must be decom-
posed into basic expressive ‘shapes’ that represent the
most likely contribution of each phrase to the overall
expression curve.

As approximation functions to represent these
shapes we decided to use the class of second-degree
polynomials (i.e., functions of the formy = ax2 +bx+ 
), because there is ample evidence from previous
research that high-level tempo and dynamics are well
characterized by quadratic or parabolic functions (Todd
1992; Repp 1992; Kronman and Sundberg 1987). De-
composing a given expression curve is an iterative pro-
cess, where each step deals with a specific level of the
phrase structure: for each phrase at a given level, we
compute the polynomial that best fits the part of the
curve that corresponds to this phrase, and ‘subtract’
the tempo or dynamics deviations ‘explained’ by the
approximations. The curve that remains after this ‘sub-
traction’ is then used in the next level of the process.
We start with the highest given level of phrasing and
move to the lowest. The rudimentary expression curve
left after all levels of phrase approximations have been
subtracted is called theresidual curve.

As by our definitions, tempo and dynamics curves
are lists of multiplicative factors, ‘subtracting’ the ef-
fects predicted by a fitted curve from an existing curve

simply means dividing they values on the curve by the
respective values of the approximation curve.

More formally, letNp = fn1; :::; nkg be the se-
quence of melody notes spanned by a phrasep, Op =fonsetp(ni) : ni 2 Npg the set (sequence) of relative
note positions of these notes within phrasep (on a nor-
malized scale from 0 to 1), andEp = fexpr(ni) : ni 2Npg the part of the expression curve (i.e., tempo or dy-
namics values) associated with these notes. Fitting a
second-order polynomial ontoEp then means finding a
functionfp(x) = a2x+ bx+ 
 such thatD(fp(x); Np) = Xni2Np[fp(onsetp(ni))� expr(ni)℄2
is minimal.

Given an expression curve (i.e., sequence of tempo
or dynamics values)Ep = fexpr(n1); :::; expr(nk)g
over a phrasep, and an approximation polynomialfp(x), ‘subtracting’ the shape predicted byfp(x) fromEp then means computing the new curveE0p = fexpr(ni)=fp(onsetp(ni)) : i = 1:::kg:

The final curve we obtain after the fitted polynomi-
als at all phrase levels have been ‘subtracted’ is called
theresidualof the expression curve.

To illustrate, Figure 1 shows the dynamics curve of
the last part (mm.31–38) of the Mozart Piano Sonata
K.279 (C major), 1st movement, first section. The four-
level phrase structure our music analyst assigned to the
piece is indicated by the four levels of brackets at the
bottom of each plot. The figure shows the stepwise
approximation of the expression curve by polynomi-
als at these four phrase levels. The red line in level
(e) of the figure shows how much of the original curve
is accounted for by the four levels of approximations,
and level (f) shows theresidualthat is not explained by
the higher-level patterns and will be submitted to a rule
learner for note-level learning.

3 Learning to Predict Tempo
and Dynamics

Given expression curves decomposed into levels
of phrasal shapes (approximation polynomials) and a
residual curve, we apply a two-level learning strategy
to these training examples. Phrase shapes for phrases
in new pieces are predicted by a standard nearest-
neighbor learning algorithm (see section 3.1), and the
residuals are fed into an inductive rule learning algo-
rithm that induces rules that predict low, note-level de-
viations (section 3.2). For prediction in new pieces,
note-level and phrase-level predictions are then com-
bined in a straightforward way (section 3.3).
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Figure 1: [best viewed in color] Multilevel decomposition of dynamics curve of performance of Mozart Sonata K.279:1:1,
mm.31–38. Level (a): original dynamics curve plus the second-order polynomial giving the best fit at the top phrase level
(blue); levels (b–d) each show, for successively lower phrase levels, the dynamics curve after ‘subtraction’ of the previous
approximation, and the best-fitting approximations at thisphrase level; Level (e): ‘reconstruction’ (red) of the original curve by
the four levels of polynomial approximations; level (f):residualafter all higher-level shapes have been subtracted.



3.1 Phrase-level learning via
nearest neighbor prediction

Given a set of training performances with tempo
and dynamics curves decomposed into phrasal shapes
and residuals as described above, a straightforward
Nearest Neighborlearning algorithm with one neigh-
bor (Duda and Hart 1967) is used to predict phrase
shapes (polynomials) for phrases in new pieces. Given
a phrase in a new piece, the algorithm searches its
memory for the most similar phrase in the known
pieces (at the same phrase level) and predicts the poly-
nomial associated with this phrase as the appropriate
shape for the new phrase.

The similarity between phrases is computed as the
inverse of the standard Euclidean distance between the
new target phrase and a phrase retrieved from mem-
ory. For the moment, phrases are represented sim-
ply as fixed-length vectors of attribute values, where
the attributes describe very basic phrase properties like
the length of a phrase, melodic intervals between the
starting and ending notes, information about where
the highest melodic point (the ‘apex’) of the phrase
is, the harmonic progression between start, apex, and
end, whether the phrase ends with a cadential chord se-
quence, etc. Given such a fixed-length representation,
the definition of the Euclidean distance is trivial.

We have decided to use only the one nearest neigh-
bor for prediction (instead of performing generalk-
NN, with k > 1), because what is predicted is not
a scalar value, but a triple of values (the three pa-
rametersa; b; 
 of an approximation polynomialy =ax2 + bx + 
), where it is not quite clear how sev-
eral predictions would be combined. Also, an obvious
drawback of nearest neighbor algorithms is that they
do not produce explicit, interpretable models — they
make predictions, but they do not describe the data and
the target classes. As a next research step, we plan to
investigate the utility of other inductive learning algo-
rithms for phrase-level learning, so that we will also get
interpretable models that we can learn something from.

3.2 Rule-based learning of ‘residuals’

As figure 1 shows quite clearly, the quadratic
phrasal functions tend to reconstruct the larger trends
in a performance curve quite well, but they cannot de-
scribe all the detailed local nuances added by a pianist
(e.g., the emphasis on particular notes). Local nuances
will be left over in what we call theresiduals— the
tempo and dynamics fluctuations left unexplained by
the phrase-level shapes (see level (f) of figure 1). We
would like to also learn a model of these local expres-
sive choices.

Actually, the residuals can be expected to represent
a mixture of noise and meaningful or intended local
deviations. To learn reliable rules for predicting note-
level expressive actions, we need a learning algorithm
that is capable of effectively distinguishing between

signal and noise. Nearest neighbor algorithms are not
particularly suitable here. Instead, we have chosen to
use PLCG (Widmer 2001a), a new inductive rule learn-
ing algorithm that has been shown to be highly effec-
tive in discovering reliable, robust rules from complex
data where only a part of the data can actually be ex-
plained. PLCG also has the advantage that it learns
explicit sets of prediction rules, so that we will get ex-
plicit interpretable models at least at the note level.

PLCG learns sets of classification rules for discrete
classification problems. In order to apply it to the resid-
ual learning problem, we need to define discrete tar-
get classes. The simple solution adopted here, which
turns out to work sufficiently well, is to assign all ex-
pression values above 1.0 to a classabove1 and all
others to classbelow1. The training examples at the
residual level are single notes, described via a set of at-
tributes that represent both intrinsic properties (such as
scale degree, duration, metrical position) and some as-
pects of the local context (e.g., melodic properties like
the size and direction of the intervals between the note
and its predecessor and successor notes, and rhythmic
properties like the durations of surrounding notes and
some abstractions thereof). An example of the kinds of
rules that PLCG discovered under these definitions is
shown in section 4.3 below.

To be able to predict numeric note-level expression
values, PLCG has been extended with a numeric learn-
ing method — again, a nearest-neighbor algorithm: all
the training examples (notes) covered by a learned rule
are stored together with the rule. When predicting an
expression value for a new note in a new test piece,
PLCG first finds a matching rule to decide what cate-
gory to apply, and then performs ak-NN search among
the training examples stored with that rule, to find thek (currently 3) notes most similar to the current one.
The expression value predicted for the new note is then
a distance-weighted average of the values associated
with thek most similar notes.

3.3 Combining phrase-level and
note-level predictions

As noted above, the expression values that make
up our expression curves are to be interpreted as mul-
tiplicative factors. Applying multi-level predictions
made by the phrase-level and note-level learners for
new pieces is thus straightforward — it is simply the
inverse of the curve decomposition problem. Given a
new piece to produce a performance for, the system
starts with an initial ‘flat’ expression curve (i.e., a list of
1.0 values) and then successively multiplies the current
value by the phrase-level predictions and the note-level
prediction.

Formally, for a given noteni that is contained inm
hierarchically nested phrasespj ; j = 1:::m, the expres-
sion (tempo or dynamics) valueexp(ni) to be applied
to it is computed as



exp(ni) = predPLCG(ni)� mYj=1 fpj (onsetpj (ni));
wherepredPLCG(ni) is the note-level prediction of
tempo or duration made by the ‘residual rules’ learned
by PLCG, andfpj is the approximation polynomial
predicted as being best suited for thejth-level phrasepj by the nearest-neighbor learning algorithm.

4 Experiments

4.1 The Data

In the following, we briefly present some exper-
iments with our new approach. The data used for
the experiments were derived from performances of
Mozart piano sonatas by a Viennese concert pianist on
a Bösendorfer SE 290 computer-controlled grand pi-
ano. The measurements made by the piano permit the
exact calculation of the tempo and dynamics curves
corresponding to these performances.

A manual phrase structure analysis (and harmonic
analysis) of some sections of these sonatas was carried
out by a musicologist. Phrase structure was marked at
four hierarchical levels. The resulting set of annotated
pieces available for our experiment is summarized in
table 1. The pieces and performances are quite com-
plex and different in character; automatically learning
expressive strategies from them is a challenging task.

phrases at level
sonata section notes 1 2 3 4

K.279:1:1 fast 4/4 391 50 19 9 5
K.279:1:2 fast 4/4 638 79 36 14 5
K.280:1:1 fast 3/4 406 42 19 12 4
K.280:1:2 fast 3/4 590 65 34 17 6
K.280:2:1 slow 6/8 94 23 12 6 3
K.280:2:2 slow 6/8 154 37 18 8 4
K.280:3:1 fast 3/8 277 28 19 8 4
K.280:3:2 fast 3/8 379 40 29 13 5
K.282:1:1 slow 4/4 165 24 10 5 2
K.282:1:2 slow 4/4 213 29 12 6 3
K.282:1:3 slow 4/4 31 4 2 1 1
K.283:1:1 fast 3/4 379 53 23 10 5
K.283:1:2 fast 3/4 428 59 32 13 6
K.283:3:1 fast 3/8 326 53 30 12 3
K.283:3:2 fast 3/8 558 79 47 19 6
K.332:2 slow 4/4 477 49 23 12 4
Total: 5506 714 365 165 66

Table 1: Sonata sections used in experiments (notes
refers to ‘melody’ notes).

4.2 Systematic Quantitative Evaluation

A systematicleave-one-piece-outcross-validation
experiment was carried out to quantitatively assess the

results achievable with our approach. Each of the 16
sections was once set aside as a test piece, while the re-
maining 15 pieces were used for learning. The learned
phrase-level and note-level predictions were then ap-
plied to the test piece, and the following measures
were computed: themean squared errorof the sys-
tem’s predictions on the piece relative to the actual
expression curve produced by the pianist (MSE =Pni=1 (pred(ni)� expr(ni))2=n), themean absolute
error (MAE =Pni=1 jpred(ni)� expr(ni)j=n), and
the correlation between predicted and ‘true’ curve.
MSE particularly punishes curves that produce a few
extreme ‘errors’ (i.e., deviations from what the pianist
actually does). MSE and MAE were also computed for
a defaultcurve that would correspond to a purely me-
chanical, unexpressive performance (i.e., an expression
curve consisting of all 1’s). That allows us to judge if
learning is really better than just doing nothing. The
results of the experiment are summarized in table 2,
where each line gives the results obtained on the re-
spective test piece when all others were used for train-
ing.

As can be seen, the results are mixed. We are
interested in cases where therelative errors (i.e.,
MSEL/MSED and MAEL/MAED) are less than 1.0,
that is, where the curves predicted by the learner are
closer to the pianist’s actual performance than a purely
mechanical rendition. In the dynamics dimension, this
is the case in 11 out of 16 cases for MSE, and in 12
out of 16 for MAE. Tempo seems not as well pre-
dictable: only in 6 out of 16 cases (both w.r.t. MSE
and MAE) does learning produce an improvement over
a mechanical performance (at least in terms of these
purely quantitative, unmusical measures). Also, the
correlations vary between 0.78 (kv280:3:1, dynamics)
and only 0.19 (kv283:1:2, tempo).

Averaging over all 16 experiments, it seems that
dynamics seems learnable under this scheme to some
extent (the relative errors beingRMSE = 0:799 andRMAE = 0:845), while tempo seems hard to predict
in this way (RMSE � 1, RMAE = 1:075). The
correlations are quite high in most cases.

The results can be improved if we split this set of
rather different pieces into more homogeneous sub-
sets, and perform learning within these subsets. For
instance, separating the pieces into fast and slow ones
and learning in each of these sets separately consid-
erably increases the number of cases where learning
produces improvement over no learning — again, es-
pecially in the domain of dynamics; tempo remains a
problem. Table 3 summarizes the results in terms of
wins/losses between learning and no learning.

Although also the tempo can be predicted quite well
in some pieces, the tempo results in general seem quite
disappointing. But a closer analysis reveals that part
of these rather poor results for tempo can be attributed
to problems with the quadratic approximations. It
turns out that quadratic or parabolic approximations



dynamics tempo
MSED MSEL MAED MAEL CorrL MSED MSEL MAED MAEL CorrL

kv279:1:1 .0383 .0411 .1643 .1544 .6212 .0348 .0406 .1220 .1479 .3550
kv279:1:2 .0318 .0737 .1479 .1975 .4204 .0244 .0335 .1004 .1327 .2984
kv280:1:1 .0313 .0266 .1432 .1226 .7080 .0254 .0192 .1053 .1032 .5821
kv280:1:2 .0281 .0491 .1365 .1642 .4711 .0250 .0304 .1074 .1232 .4010
kv280:2:1 .1558 .0831 .3498 .2002 .7168 .0343 .0187 .1189 .1079 .7518
kv280:2:2 .1424 .0879 .3178 .2235 .6980 .0406 .0431 .1349 .1400 .5128
kv280:3:1 .0334 .0134 .1539 .0916 .7765 .0343 .0244 .1218 .1136 .5813
kv280:3:2 .0226 .0728 .1231 .2089 .4590 .0454 .0418 .1365 .1327 .3953
kv282:1:1 .1126 .0465 .2792 .1721 .7667 .0295 .0315 .1212 .1160 .4222
kv282:1:2 .0920 .0521 .2537 .1782 .6976 .0227 .0421 .1096 .1477 .3460
kv282:1:3 .1230 .0613 .2595 .2105 .7200 .1011 .0583 .2354 .1815 .6676
kv283:1:1 .0283 .0234 .1423 .1194 .6007 .0183 .0274 .0918 .1193 .2441
kv283:1:2 .0371 .0520 .1611 .1629 .4406 .0178 .0275 .0932 .1208 .1948
kv283:3:1 .0404 .0320 .1633 .1323 .6030 .0225 .0214 .1024 .1085 .4460
kv283:3:2 .0417 .0402 .1676 .1466 .5336 .0238 .0254 .1069 .1150 .2948
kv332:2 .0919 .0844 .2554 .2370 .5475 .0286 .0416 .1110 .1520 .2787
Mean: .0657 .0525 .2012 .1701 .6113 .0330 .0329 .1199 .1289 .4232

Table 2: Results of cross-validation experiment. Measuressubscripted withD refer to the ‘default’ (mechanical,
inexpressive) performance, those withL to the performance produced by the learner.

dynamics tempo
Learning from all pieces:

MSE 11+/5- 6+/10-
MAE 12+/4- 6+/10-
Learning from slow and fast pieces separately:
MSE 14+/2- 8+/8-
MAE 14+/2- 8+/8-

Table 3: Summary of wins vs. losses between learn-
ing and no learning; + means curves predicted by the
learner better fit the pianist than a flat curve (i.e., rela-
tive error< 1),� means the opposite.

might not be as suitable for describing expressive tim-
ing as has hitherto been believed. When we look at
how well the four-level decompositions (without the
residues) reconstruct the respective training curves,1

we find that the dynamics curves are generally better
approximated by the four levels of polynomials than
the tempo curves. The overall figures are given in ta-
ble 4. The difference between tempo and dynamics is
quite dramatic. This phenomenon definitely deserves
more detailed investigations.

Generally, we must keep in mind that our current
representation for phrases is extremely limited: charac-
terizing phrases via a small number of global attributes
does not give the learner access to the detailed contents
of a phrase. The results might improve substantially
if we had a better representation. Extensive studies in
this direction are currently planned.

Another question of interest is whether the learning
1That is, we do not look at the performance of the learning sys-

tem, but only at the effectiveness of approximating a given curve by
four levels of quadratic functions.

MSED MSEP MAED MAEP CorrP
dyn. .0657 .0055 .2012 .0523 .9456
tempo .0330 .0127 .1199 .0720 .7421

Table 4: Summary of fit of four-level polynomial de-
composition on the training data. Measures subscripted
withD refer to the ‘default’ (mechanical, inexpressive)
performances (repeated from table 2), those withP to
the fit of the curves reconstructed by the polynomial
decompositions.

of note-level rules from theresidualscontributes any-
thing to the results. When we disable note-level learn-
ing and only use phrase-level learning for predicting
expression curves, the results are as shown in table 5.
Comparing this to table 2, we note that the note-level
rules do indeed improve the quality of the results, both
in terms of error and correlation. The improvement
may be slight in quantitative terms, but listening tests
show that the predicted residuals contribute important
audible effects that improve the musical quality of the
resulting performances.

MSED MSEL MAED MAEL CorrL
dyn. .0657 .0533 .2012 .1718 .6027
tempo .0330 .0339 .1199 .1308 .3877

Table 5: Results of learning at phrase-levels only (i.e.,
without residual predictions).
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Figure 2: [best viewed in color] Learner’s predictions for the dynamics curve of Mozart Sonata K.280, 1st move-
ment, mm. 25–50. Level (a): quadratic expression shapes predicted for phrases at four levels (blue); (b): composite
predicted dynamics curve resulting from phrase-level shapes and note-level predictions (red) vs. pianist’s actual
dynamics (black).

4.3 Qualitative Results

It is instructive to look at the expression curves pro-
duced by the learning system, and to listen to the re-
sulting ‘expressive’ performances. The quality varies
strongly, passages that are musically sensible are some-
times followed by rather extreme errors, at least in mu-
sical terms. One incorrect shape can seriously compro-
mise the quality of a composite expression curve that
would otherwise be perfectly musical.

Figure 2 shows a case where prediction worked
quite well, especially concerning the higher-level as-
pects. Some of the local patterns were also predicted
quite well, while others were obviously missed. The
piece from which this passage was taken — the first
section of movement 3 of the piano sonata K.280 — is
also enclosed as a sound example (see below).

With respect to note-level learning, an analysis of
the rules learned by PLCG from the residuals shows
that PLCG indeed seems to discover quite general and
sensible principles of local timing and dynamics. An
example of a rule discovered by PLCG is

RULE TL4:
below1 IF

next dur ratio � 1=3 &
dur next > 1

“Lengthen a note if it is followed by a sub-
stantially longer note (i.e., the ratio be-
tween its duration and that of the next note
is� 1:3) and if the next note is longer than
1 beat.”

This kind of principle — slightly delaying a long
note that follows short ones — has been noted before
and indeed has been found to be quite a general princi-
ple, not only in Mozart performances (Widmer 2001b).

5 Notes Concerning the Enclosed
Sound Examples

Enclosed with this paper is a test piece (the first sec-
tion of the third movement of the Mozart piano sonata



K.280, F major), as played by the system after learn-
ing from the other sonata sections. For comparison, we
also include a purely mechanical, inexpressive version
produced directly from the score.

It should be kept in mind that this is purely a re-
sult of automated learning. Only tempo and dynamics
were shaped by the system. Articulation and pedalling
are simply ignored, so the result cannot be expected to
sound truly pianist-like. Also, grace notes and other
ornaments are currently inserted via an extremely sim-
ple and crude heuristic and should be made to sound
much more musical, depending on the context. The
only other effect that was added was a simple dynamic
enhancement of the melody: melody notes were made
to be 20% louder than the rest, in order to make the
melody more clearly audible. This factor is roughly
consistent with empirical results of a recent study on
melody dynamics and melody lead (Goebl 2001).

The example demonstrates the musical potential of
our system, but also exhibits some obvious problems.
Still, overall the system’s performance sounds quite
lively and not uninteresting, with a number of quite
musical developments both in tempo and dynamics,
and with a closing of the piece by a nice final ritard.

6 Discussion and Future Work

In this paper, we have presented a two-level ap-
proach to learning both phrase-level and note-level tim-
ing and dynamics strategies for expressive music per-
formance. Both qualitative and quantitative analy-
ses show that the approach has some promise, but of
course there are still some severe problems that must
be solved.

One obvious limitation is the propositional
attribute-value representation we are currently using
to characterize phrases, which does not permit the
learner to refer to details of the internal structure and
content of phrases. As a next step, we will look at
possibilities of using more expressive representation
languages and related learning algorithms (e.g. re-
lational learning methods from the area of Inductive
Logic Programming (Lavrac and Dzeroski 1994)).

A general problem with nearest neigbor learning is
that it does not produce interpretable models. As the
explicit goal of our project is to contribute new insights
to musical performance research, this is a serious draw-
back. Alternative learning algorithms will have to be
investigated.

A more difficult problem is the fact that we are cur-
rently predicting phrasal shapes individually and inde-
pendently of the shapes associated (or predicted for)
other, related phrases (i.e., phrases that contain the cur-
rent phrase, or are contained by it). Obviously, this is
too simplistic. Shapes applied at different levels are
highly dependent. Predicting highly dependent con-
cepts at different levels of resolution is a new kind of
scenario for machine learning, with potential applica-

tions in many domains, and we are planning to study
this problem in a general way.
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