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Abstract about performance (see (Gabrielsson 1999) for an ex-
cellent overview of current knowledge in this area).

The paper describes basic research in the area of ma- Previous research has shown that computers can
chine learning and musical expression. A first stepindeed find and describe interesting and useful regu-
towards automatic induction of multi-level models of |arities at the level of individual notes. Using a new
expressive performance (currently only tempo and dymachine learning algorithm (Widmer 2001a), we suc-
namics) from real performances by skilled pianists isceeded in discovering a small set of simple, robust, and
presented. The goal is to learn to apply sensible tempaighly general rules that predict a substantial part of the
and dynamics ‘shapes’ at various levels of the hierar-note-level choices of a performer (e.g., whether he will
chical musical phrase structure. We propose a generakhorten or lengthen a particular note) with high pre-
method for decomposing given expression curves intgjsion (Widmer 2001b). However, it became equally
elementary shapes at different levels, and for separatclear (actually, it was clear from the outset) that this
ing phrase-level expression patterns from local, note-ow level of single notes is far from sufficient as a basis
level ones. We then present a hybrid learning systenfor a complete model of expressive performance, and
that learns to predict, via two different learning al- that these note-level models must be complemented
gorithms, both note-level and phrase-level expressiveyith models of expression at higher levels of musical
patterns, and combines these predictions into compleyrganization (e.g., the level of phrases).
composite expression curves for new pieces. Experi- The work presented here is a first preliminary step
mental results indicate that the approach is generallyin this direction. We describe a system that learns to
viable; however, we also discuss a number of severgyredict elementary tempo and dynamics ‘shapes’ at dif-
limitations that still need to be overcome in order to ar- ferent levels of the hierarchical musical phrase struc-
rive at truly musical machine-generated performancesture, and combines these predictions with local tim-
ing and dynamics effects predicted by learned note-
level models. To do this, the learning system must
first be able to decompose given expression curves into
elementary patterns that can be associated with indi-
vidual phrases (at different phrase levels), in order to
Bbtain meaningful training examples for phrase-level
qearning, and to separate phrase-level effects from lo-

via Artificial Intelligence and, in particular, inductive : :
. . . .~ cal note-level effects (which will be learned by a sepa-
machine learning methods (Widmer 2001c). This is to ; . o
: . rate learning algorithm). Likewise, we need a strategy
be regarded as basic research. We do not intend to en- o ) : )
) : or combining expressive shapes predicted at different
gineer computer programs that generate music perfor; : : ; .
; . levels into one final composite expression curve.
mances that sound as human-like as possible. Rather, : ; .
In the following, we describe our current solution

our goal is to investigate to what extent a machine can the problems of expression curve decomposition

automatically build, via inductive learning from ‘real- o )
, g . . and re-combination and present a first prototype sys-
world’ data (i.e., real performances by highly skilled : : ; -
}em that combines two types of learning algorithms: a

musicians), operational models of certain aspects 0simple nearest neighbor algorithm that predicts phrase-

performance (e.g., predictive models of tempo, timing,leveI expressive shapes in new pieces by ‘analogy’ to
dynamics, etc.). By analysing the models induced by

the machine, we hope to get new insights into funda_shapes identified in similar phrases in other pieces, and

L . a rule learning algorithm that learns prediction rules

mental principles underlying the complex phenomeno o ;
. . o or note-level effects from the ‘residuals’ that cannot
of expressive music performance, and in this way con-

tribute to the growing body of scientific knowledge be attributed to the phrase structure by the expression

1 Introduction

The work described in this paper is another step in
a long-term research endeavour that aims at buildin
guantitative models of expressive music performanc



decomposition algorithm. Experiments with perfor- simply means dividing the values on the curve by the

mances of various sections of Mozart piano sonatasespective values of the approximation curve.

show that the approach is viable in principle. More formally, letN,, = {ni,...,n.} be the se-

However, our approach still suffers from a number quence of melody notes spanned by a phgase, =

of severe limitations, and these will be discussed in the{onset,(n;) : n; € N, } the set (sequence) of relative

final section of this paper. note positions of these notes within phrag@n a nor-
malized scale from O to 1), arfd, = {expr(n;) : n; €
N, } the part of the expression curve (i.e., tempo or dy-

2 Multilevel Decomposition of namics values) associated with these notes. Fitting a
EXpI’Oﬂ Curves second-order polynomial oni, then means finding a

function f,(z) = a*z + bz + ¢ such that

Input to our learning system are the scores of musi-
cal pieces plus measurements of the tempo and dynamP (f, (), N,) = Y [fp(onset,(n;)) — expr(n;)]*
ics variations applied by a pianist in a particular perfor- ni €Ny
mance. These variations are given in the forresfipo
anddynamics curveand represent the local tempo an . . .
the relative loudness of each melody note of the piece, Given an expression curve (i.e., sequence of tempo

respectively. Both tempo and loudness are represented dynamrl]cs valuesyjp - {empr(’.“)’t‘.“’ emprl(n’“)}. |
as multiplicative factors, relative to the average tempoOver a‘ phrasep, 6}” an approximation polynomia
(x), ‘'subtracting’ the shape predicted iy(«) from

and dynamics of the piece. For instance, a tempo indifp h fing th
cation of 1.5 for a note means that the note was pIaye(PP €n means computing the new curve
1.5 times as fast as the average tempo of the piece, and .. .
! = 1€ i .set Li i =1...k}.
a loudness of 1.5 means that the note was played 50% {eapr(ni)/ fy(onsety(ni)) : 4 }

louder than the average loudness of all melody notes.  The final curve we obtain after the fitted polynomi-
In addition, the system is given information about 5is at all phrase levels have been ‘subtracted’ is called
the hierarchical phrase structuref the pieces, cur- theresidualof the expression curve.
rently at four levels of phrasing. Phrase structure anal- g jjjystrate, Figure 1 shows the dynamics curve of
ysis is currently done by hand, as no reliable algorithmse |ast part (mm.31-38) of the Mozart Piano Sonata
are available for this task. _ K.279 (C major), 1st movement, first section. The four-
Given an expression (dynamics or tempo) curve,jeve| phrase structure our music analyst assigned to the
the learner is first faced with the problem of extracting piece is indicated by the four levels of brackets at the
the training exampledor phrase-level and note-level pottom of each plot. The figure shows the stepwise
learning. That is, the complex curve must be decom'approximation of the expression curve by polynomi-
posed into basic expressive ‘shapes’ that represent thgis at these four phrase levels. The red line in level
most Iikgly contribution of each phrase to the overall (e) of the figure shows how much of the original curve
expression curve. _ is accounted for by the four levels of approximations,
As approximation functions to represent theseand level (f) shows theesidualthat is not explained by
shapes we decided to use the class of second-degrgge higher-level patterns and will be submitted to a rule

polynomials (i.e., functions of the form = az? + learner for note-level learning.
bz + ¢), because there is ample evidence from previous

research that high-level tempo and dynamics are well ] ]
characterized by quadratic or parabolic functions (Todd3 L earning to Predict Tempo
1992; Repp 1992; Kronman and Sundberg 1987). De- :

composing a given expression curve is an iterative pro- and Dynamlcs
cess, where each step deals with a specific level of the
phrase structure: for each phrase at a given level, we

compute the polynomial that best fits the part of theresidual curve, we apply a two-level learning strategy

curve that correspon_ds to t.h's. phr?se, a_nd ,SUbtraCtto these training examples. Phrase shapes for phrases
the tempo or dynamics deviations *explained” by thein new pieces are predicted by a standard nearest-

approximations. The curve that remains after this SUb'neighbor learning algorithm (see section 3.1), and the

U\?Ct'?nt's .i?]et?] usrlgdhln tthe_ nex'T Ievlel ]?f ttTe proceszresiduals are fed into an inductive rule learning algo-
e start wi € highest given 1evel of phrasing and 1, that induces rules that predict low, note-level de-

move to the lowest. The rudimentary expression CUVSiations (section 3.2). For prediction in new pieces,
left after all levels of phrase approximations have beerhote-level and phrase-level predictions are then com-

subtracted is callgq .the3|dual curve . bined in a straightforward way (section 3.3).
As by our definitions, tempo and dynamics curves

are lists of multiplicative factors, ‘subtracting’ the ef-
fects predicted by a fitted curve from an existing curve

dqis minimal.

Given expression curves decomposed into levels
phrasal shapes (approximation polynomials) and a
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Figure 1: [best viewed in color] Multilevel decomposition of dynamicurve of performance of Mozart Sonata K.279:1:1,
mm.31-38. Level (a): original dynamics curve plus the sdeorter polynomial giving the best fit at the top phrase level
(blue); levels (b—d) each show, for successively lower ghrgvels, the dynamics curve after ‘subtraction’ of thevimes
approximation, and the best-fitting approximations at piisase level; Level (e): ‘reconstruction’ (red) of the amig curve by
the four levels of polynomial approximations; level (fgsidualafter all higher-level shapes have been subtracted.



3.1 Phraseleve learningvia signal and noise. Nearest neighbor algorithms are not
nearest neighbor prediction particularly suitable here. Instead, we have chosen to
) o . use PLCG (Widmer 2001a), a new inductive rule learn-
Given a set of training performances with tempo jng algorithm that has been shown to be highly effec-
and dynamics curves decomposed into phrasal shapgge in discovering reliable, robust rules from complex
and residuals as described above, a straightforwargsig where only a part of the data can actually be ex-
Nearest Neighbolearning algorithm with one neigh- pjained. PLCG also has the advantage that it learns
bor (Duda and Hart 1967) is used to predict phraseaypjicit sets of prediction rules, so that we will get ex-
shapes (polynomials) for phrases in new pieces. Givenyicit interpretable models at least at the note level.
a phrase in a new piece, the algorithm searches itS p| cG learns sets of classification rules for discrete
memory for the most similar phrase in the known ¢|assification problems. In orderto apply it to the resid-
pieces (at the same phrase level) and predicts the polyja| |earning problem, we need to define discrete tar-
nomial associated with this phrase as the appropriat@et classes. The simple solution adopted here, which
shape for the new phrase. turns out to work sufficiently well, is to assign all ex-
The similarity between phrases is computed as thepression values above 1.0 to a clagsovel and all
inverse of the standard Euclidean distance between thgihers to claskel owl. The training examples at the
new target phrase and a phrase retrieved from menyesjqyal level are single notes, described via a set of at-
ory. For the moment, phrases are represented siMgiptes that represent both intrinsic properties (such as
ply as fixed-length vectors of attribute values, wheregggie degree, duration, metrical position) and some as-
the attributes describe very basic phrase properties likgects of the local context (e.g., melodic properties like
the length of a phrase, melodic intervals between thene size and direction of the intervals between the note
starting and ending notes, information about whereyng jts predecessor and successor notes, and rhythmic
the highest melodic point (the ‘apex’) of the phrase yroperties like the durations of surrounding notes and
is, the harmonic progression between start, apex, andome abstractions thereof). An example of the kinds of
end, whether the phrase ends with a cadential chord sgyjes that PLCG discovered under these definitions is
quence, etc. Given such a fixed-length representatiorgnown in section 4.3 below.
the definition of the Euclidean distance is trivial. To be able to predict numeric note-level expression
We have decided to use only the one nearest neighya|yes, PLCG has been extended with a numeric learn-
bor for prediction (instead of performing genedal  jng method — again, a nearest-neighbor algorithm: all
NN, with k& > 1), because what is predicted is not the training examples (notes) covered by a learned rule
a scalar value, but a triple of values (the three pa-re stored together with the rule. When predicting an
rametersa, b, ¢ of an approximation polynomigJ = expression value for a new note in a new test piece,
az® + bz + ), where it is not quite clear how sev- p| ¢ first finds a matching rule to decide what cate-
eral predictions would be combined. Also, an obviousgory to apply, and then performskaNN search among
drawback of nearest neighbor algorithms is that theyihe training examples stored with that rule, to find the
do not produce explicit, interpretable models — they ;. (currently 3) notes most similar to the current one.
make predictions, but they do not describe the data anghe expression value predicted for the new note is then

the target classes. As a next research step, we plan © gistance-weighted average of the values associated
investigate the utility of other inductive learning algo- \yith the  most similar notes.

rithms for phrase-level learning, so that we will also get

interpretable models that we can learn something from ..
P g 3.3 Combining phrase-level and

3.2 Rule-based learning of ‘residuals note-level predictions
As noted above, the expression values that make

h As Iflfguret. L s?ov;st quite leamt/’ththef quac:ratué up our expression curves are to be interpreted as mul-
phrasal functions tend fo reconstruict Ine farger fren ?iplicative factors. Applying multi-level predictions

in a performance curve quite well, but they cannot de-\ . o v the phrase-level and note-level learners for

scribe all the detailed local nuances added by a pianisﬁew pieces is thus straightforward — it is simply the

(g.g., the emphags on particular notes). Local NUaNCERerse of the curve decomposition problem. Given a
will be left over in what we call theesiduals— the

¢ dd ics fluctuati left lained b new piece to produce a performance for, the system
€mpo and dynamics Tiuctuations 1emt UNeXpiained by, s \yith an initial ‘flat’ expression curve (i.e., alisto

the phrase-level shapes (see level (f) of figure 1). Wel'o values) and then successively multiplies the current

WOUId “k.e o also learn a model of these local EXPIeSValue by the phrase-level predictions and the note-level
sive choices. ?rediction

A.Ctt ually, fthe .reS|du3Is can pe ?xlpect'e? to drecpi)rlese? Formally, for a given note; that is contained im».
a mpxure o1 noise and meaningiul or infended ‘oca hierarchically nested phrasgs, j = 1...m, the expres-

deviations. Tp Iearn reliable rules for preqllctmg nqte- sion (tempo or dynamics) valuerp(n,) to be applied
level expressive actions, we need a learning algorlthn}0 it is computed as

that is capable of effectively distinguishing between



results achievable with our approach. Each of the 16
m sections was once set aside as a test piece, while the re-
exp(n;) = predproc(ng) x H Iy, (onset,, (n;)), maining 15 pieces were used for !egrning. The learned
phrase-level and note-level predictions were then ap-
plied to the test piece, and the following measures
where predprcq(n;) is the note-level prediction of were computed: thenean squared erroof the sys-
tempo or duration made by the ‘residual rules’ learnedtem’s predictions on the piece relative to the actual
by PLCG, andf,, is the approximation polynomial expression curve produced by the pianisf §E =
predicted as being best suited for tff&-level phrase >r, (pred(n;) — expr(n;))*/n), themean absolute
p; by the nearest-neighbor learning algorithm. error (MAE = Y7, |pred(n;) — expr(n;)|/n), and
the correlation between predicted and ‘true’ curve.
MSE particularly punishes curves that produce a few

Jj=1

4 EXper Iments extreme ‘errors’ (i.e., deviations from what the pianist
actually does). MSE and MAE were also computed for
4.1 TheData adefaultcurve that would correspond to a purely me-

In the following, we briefly present some exper- chanical, unexpressive performance (i.e., an expression

iments with our new approach. The data used forCUTVe consisting of all 1's). That allows us to judge if
the experiments were derived from performances of€aming is really better than just doing nothing. The
Mozart piano sonatas by a Viennese concert pianist oh€Sults of the experiment are summarized in table 2,
a Bosendorfer SE 290 computer-controlled grand pi_where each line gives the results obtained on the re-

ano. The measurements made by the piano permit thebective test piece when all others were used for train-

exact calculation of the tempo and dynamics curvesn9d- )
corresponding to these performances. ~ Ascan .be seen, the results are mixed. We are
A manual phrase structure analysis (and harmonidnterested in cases where thelative errors (i.e.,
analysis) of some sections of these sonatas was carriéﬂSE_L/MSED and MAEL/MAEI?) are less than 1.0,
out by a musicologist. Phrase structure was marked afat is, where the curves predicted by the learner are
four hierarchical levels. The resulting set of annotatedcl0Ser to the pianist's actual performance than a purely
pieces available for our experiment is summarized inmechanlcal _rend|t|on. In the dynamics d|menS|on., this
table 1. The pieces and performances are quite comi$ the case in 11 out of 16 cases for MSE, and in 12
plex and different in character; automatically learning Ut of 16 for MAE. Tempo seems not as well pre-

expressive strategies from them is a challenging task. dictable: only in 6 out of 16 cases (both w.r.t. MSE
and MAE) does learning produce an improvement over

a mechanical performance (at least in terms of these
purely quantitative, unmusical measures). Also, the
correlations vary between 0.78 (kv280:3:1, dynamics)
and only 0.19 (kv283:1:2, tempo).

Averaging over all 16 experiments, it seems that
dynamics seems learnable under this scheme to some
extent (the relative errors beinl@M SE = 0.799 and
RMAFE = 0.845), while tempo seems hard to predict
in this way RMSE ~ 1, RMAE = 1.075). The
correlations are quite high in most cases.

The results can be improved if we split this set of
rather different pieces into more homogeneous sub-
sets, and perform learning within these subsets. For
instance, separating the pieces into fast and slow ones
and learning in each of these sets separately consid-
erably increases the number of cases where learning
produces improvement over no learning — again, es-
pecially in the domain of dynamics; tempo remains a
problem. Table 3 summarizes the results in terms of
Table 1: Sonata sections used in experiment#gs  wins/losses between learning and no learning.
refers to ‘melody’ notes). Although also the tempo can be predicted quite well

in some pieces, the tempo results in general seem quite

disappointing. But a closer analysis reveals that part
4.2 Systematic Quantitative Evaluation of these rather poor results for tempo can be attributed
to problems with the quadratic approximations. It

A systematicleave-one-piece-outross-validation yyms out that quadratic or parabolic approximations
experiment was carried out to quantitatively assess the

phrases at level
sonata section notes 1 2 3
K.279:1:1 fast4/4| 391 | 50 19 9
K.279:1:2 fast4/4)| 638 | 79 36 14
K.280:1:1 fast 3/4| 406 | 42 19 12
K.280:1:2 fast3/4| 590 | 65 34 17
K.280:2:1 slow 6/8 94 23 12 6
K.280:2:2 slow6/8| 154 | 37 18 8
K.280:3:1 fast3/8| 277 | 28 19 8
K.280:3:2 fast3/8)] 379 | 40 29 13
K.282:1:1 slow4/4| 165 | 24 10 5
K.282:1:2 slow4/4| 213 | 29 12 6
K.282:1:3 slow 4/4 31 4 2 1
K.283:1:1 fast3/4| 379 | 53 23 10
K.283:1:2 fast3/4| 428 | 59 32 13
K.283:3:1 fast3/8)| 326 | 53 30 12
K.283:3:2 fast3/8)| 558 | 79 47 19
K.332:2 slow 4/4| 477 | 49 23 12
Total: 5506 | 714 365 165

JgrowooFPwNo s ~wo b o o|b




dynamics tempo
MSEp MSE;, MAEp MAE; Corr, | MSEp MSE. MAEp MAE; Corr
kv279:1:1| .0383  .0411 .1643 1544 6212 .0348  .0406 .1220 .1479  .3550
kv279:1:2| .0318 .0737 .1479 1975 4204 .0244  .0335 .1004 1327 .2984
kv280:1:1| .0313 .0266 .1432 1226 .7080 .0254  .0192 .1053 .1032  .5821
kv280:1:2| .0281  .0491 .1365 1642 4711 .0250 .0304 1074 1232 .4010
kv280:2:1| .1558  .0831 .3498 .2002 .7168 .0343  .0187 .1189 1079 7518
kv280:2:2 | .1424  .0879 .3178 .2235 .6980 .0406  .0431 .1349 .1400 .5128
kv280:3:1| .0334 .0134 .1539 .0916 .7765 .0343  .0244 .1218 1136 .5813
kv280:3:2| .0226  .0728 1231 2089  .4590 .0454  .0418 .1365 1327 .3953
kv282:1:1| .1126  .0465 .2792 1721 7667 .0295  .0315 1212 1160  .4222
kv282:1:2| .0920 .0521 .2537 1782  .697)6 .0227  .0421 .1096 1477 .3460
kv282:1:3| .1230 .0613 .2595 2105 .7200 .1011  .0583 .2354 .1815 .6676
kv283:1:1| .0283 .0234 .1423 1194 6007 .0183  .0274 .0918 1193 2441
kv283:1:2| .0371  .0520 1611 1629  .4406 .0178  .0275 .0932 .1208 .1948
kv283:3:1| .0404  .0320 .1633 1323  .6030 .0225 .0214 .1024 .1085  .4460
kv283:3:2| .0417  .0402 .1676 1466  .5336 .0238 .0254 .1069 1150 .2948
kv332:2 .0919  .0844 .2554 .2370 .5475 .0286  .0416 1110 .1520 .2787
Mean: .0657  .0525 .2012 1701  .6113 .0330  .0329 1199 1289 4232

Table 2: Results of cross-validation experiment. Meassuéscripted withD refer to the ‘default’ (mechanical,
inexpressive) performance, those witho the performance produced by the learner.

| dynamics | tempo MSE, MSEr MAE, MAE, Corrp
Learning from all pieces: dyn. .0657 .0055 .2012 .0523 .9456
MSE 11+/5- 6+/10- tempo | .0330 .0127 11199 .0720 7421
MAE 12+/4- 6+/10-
Learning from slow and fast pieces separately: Table 4: Summary of fit of four-level polynomial de-
MSE 14+/2- 8+/8- composition on the training data. Measures subscripted
MAE 14+/2- 8+/8- with D refer to the ‘default’ (mechanical, inexpressive)

performances (repeated from table 2), those witto

Table 3: Summary of wins vs. losses between leamyne fit of the curves reconstructed by the polynomial
ing and no learning; + means curves predicted by thedecompositions.

learner better fit the pianist than a flat curve (i.e., rela-
tive error< 1), — means the opposite.

of note-level rules from theesidualscontributes any-

i ) o . thing to the results. When we disable note-level learn-
might not be as suitable for describing expressive tlm-ing and only use phrase-level learning for predicting

ing as has hitherto been believed. When we look akyression curves, the results are as shown in table 5.
how well the four-level decompositions (without the Comparing this to table 2, we note that the note-level
residues) reconstruct the respective training cu?‘ves,rmes do indeed improve the quality of the results, both
we find that the dynamics curves are generally bettef, erms of error and correlation. The improvement
approximated by the four levels of polynomials than may pe slight in quantitative terms, but listening tests
the tempo curves. The overall figures are given in ta-gpqy that the predicted residuals contribute important

ble 4. The difference between tempo and dynamics i, gib|e effects that improve the musical quality of the
quite dramatic. This phenomenon definitely desewe?esulting performances.

more detailed investigations.
Generally, we must keep in mind that our current

representation for phrases is extremely limited: charac- MSEp MSE. MAEp MAE. Corrg
terizing phrases via a small number of global attributes dyn. .0657  .0533 .2012 1718  .6027
does not give the learner access to the detailed contentgempo | .0330  .0339  .1199  .1308  .3877

of a phrase. The results might improve substantially
if we had a better representation. Extensive studies ifable 5: Results of learning at phrase-levels only (i.e.,
this direction are currently planned. without residual predictions).

Another question of interest is whether the learning

1That is, we do not look at the performance of the learning sys-
tem, but only at the effectiveness of approximating a giveve by
four levels of quadratic functions.
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Figure 2: [best viewed in color] Learner’s predictions foetdynamics curve of Mozart Sonata K.280, 1st move-
ment, mm. 25-50. Level (a): quadratic expression shapeiiqbee for phrases at four levels (blue); (b): composite
predicted dynamics curve resulting from phrase-level ssand note-level predictions (red) vs. pianist's actual
dynamics (black).
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4.3 Qualitative Results

Itis instructive to look at the expression curves pro-
duced by the learning system, and to listen to the re-
sulting ‘expressive’ performances. The quality varies
strongly, passages that are musically sensible are some-
times followed by rather extreme errors, at least in mu-
sical terms. One incorrect shape can seriously compro-
mise the quality of a composite expression curve that
would otherwise be perfectly musical.

Figure 2 shows a case where prediction worked
quite well, especially concerning the higher-level as-

next dur ratio <1/3 &
dur _next >1

“Lengthen a note if it is followed by a sub-
stantially longer note (i.e., the ratio be-
tween its duration and that of the next note
is < 1:3) and if the next note is longer than
1 beat”

This kind of principle — slightly delaying a long

pects. Some of the local patterns were also predictedéote that follows short ones — has been noted before
quite well, while others were obviously missed. The and indeed has been found to be quite a general princi-

piece from which this passage was taken — the firstp|
section of movement 3 of the piano sonata K.280 — is
also enclosed as a sound example (see below).

With respect to note-level learning, an analysis ofD
the rules learned by PLCG from the residuals shows
that PLCG indeed seems to discover quite general and
sensible principles of local timing and dynamics. An
example of a rule discovered by PLCG is

e, not only in Mozart performances (Widmer 2001b).

Notes Concerning the Enclosed
Sound Examples

Enclosed with this paper is a test piece (the first sec-

tion of the third movement of the Mozart piano sonata



K.280, F major), as played by the system after learn-tions in many domains, and we are planning to study
ing from the other sonata sections. For comparison, wehis problem in a general way.
also include a purely mechanical, inexpressive version
produced directly from the score.

It should be kept in mind that this is purely a re- ACknOWledgmentS
sult of automated learning. Only tempo and dynamics
were shaped by the system. Articulation and pedallin

are simply ignored, so the result cannot be expected t ) . !
for Education, Science, and Culture. The Austrian

sound truly pianist-like. Also, grace notes and other i @it ;
ornaments are currently inserted via an extremely Sim_Research Institute for Artificial Intelligence acknowl-

ple and crude heuristic and should be made to soun§99es basic financial support from the Austrian Federal
much more musical, depending on the context. ThMinistry for Education, Smencg, and Culture. Thanks
only other effect that was added was a simple dynamid® Wermner Goebl for performing the harmonic and

enhancement of the melody: melody notes were mad@Nrase structure analysis of the Mozart sonatas.

to be 20% louder than the rest, in order to make the

melody more clearly audible. This factor is roughly References

consistent with empirical results of a recent study on

This research is part of the START programme
99-INF, financed by the Austrian Federal Ministry

melody dynamics and melody lead (Goebl 2001). Duda, R. and P. Hart (1967pattern Classification and
The example demonstrates the musical potential of Scene AnalysisNew York, NY: Wyley & Sons.

our system, but also exhibits some obvious problems. Gabrielsson, A. (1999). The performance of music. In

Still, overall the system’s performance sounds quite D. Deutsch (Ed.)The Psychology of Music (2nd ed.)

lively and not uninteresting, with a number of quite San Diego, CA, pp. 501-602. Academic Press.

musical developments both in tempo and dynamics, Goebl, W. (2001). Melody lead in piano performance: Ex-

and with a closing of the piece by a nice final ritard. pressive device or artifact?ournal of the Acoustical

Society of America 11@), 563-572.
Kronman, U. and J. Sundberg (1987). Is the musical ri-

6 Discussion and Future Work tard an allusion to physical motion? In A. Gabriels-
son (Ed.),Action and Perception in Rhythm and Mu-
In this paper, we have presented a two-level ap- sic, Stockholm, Sweden, pp. 57-68. Royal Swedish
proach to learning both phrase-level and note-level tim- Academy of Music No.55.
ing and dynamics strategies for expressive music per- Lavrac, N. and S. Dzeroski (1994pductive Logic Pro-
formance. Both qualitative and quantitative analy- gramming Chichester, NY: Ellis Horwood.

ses show that the approach has some promise, but of Repp, B. (1992). Diversity and commonality in music per-
course there are still some severe problems that must formance: An analysis of timing microstructure in
be solved. schumann’s ‘traumereidournal of the Acoustical So-

One obvious limitation is the propositional ciety of America 9&), 2546‘_2568- _
attribute-value representation we are currently using Todd, N. M. (1992). The dynamics of dynamics: A model
to characterize phrases, which does not permit the of musical gxpressmrﬂournal of the Acoustical Soci-
learner to refer to details of the internal structure and et of America 913540-3550. o
content of phrases. As a next step, we will look at Widmer, G. (2001a). Discovering strong principles of
possibilities of using more expressive representation l‘zxaprrneiﬁs"’setrzzgs'c ﬁ;:g;%?ﬁesv‘g;htgzelihcgurr(;"e
languages and related learning algorithms (e.g. re- pean c?onferen?:)g on MachinegLearning (ECML’Ol-)
lational learning methods from the area of Inductive Berlin. Springer Verlag '
Logic Programming (Lavrac and Dzeroski 1994)).

A | bl ith t neiabor | S Widmer, G. (2001b). Inductive learning of general and
general probiem with hearest neigoor learning IS robust local expression principles. Rroceedings of

that it does not produce interpretable models. As the the International Computer Music Conferenteter-
explicit goal of our project is to contribute new insights national Computer Music Association.

to musical performance research, this is a serious draw- \yigmer G. (2001c). Using ai and machine learning to
pack. .Alternative learning algorithms will have to be study expressive music performance: Project survey
investigated. and first reportAl Communications 18), 149-162.

A more difficult problem is the fact that we are cur-
rently predicting phrasal shapes individually and inde-
pendently of the shapes associated (or predicted for)
other, related phrases (i.e., phrases that contain the cur-
rent phrase, or are contained by it). Obviously, this is
too simplistic. Shapes applied at different levels are
highly dependent. Predicting highly dependent con-
cepts at different levels of resolution is a new kind of
scenario for machine learning, with potential applica-
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