| The MIT Press

Max at Seventeen
Author(s): Miller Puckette

Source: Computer Music Journal, Winter, 2002, Vol. 26, No. 4, Languages and
Environments for Computer Music (Winter, 2002), pp. 31-43

Published by: The MIT Press

Stable URL: https://www.jstor.org/stable/3681767

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
https://about.jstor.org/terms

The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer
Music Journal

JSTOR

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms


https://www.jstor.org/stable/3681767

Miller Puckette

Department of Music

University of California, San Diego
La Jolla, California 92093-0326 USA
msp@ucsd.edu

I have worked for many years on a computer envi-
ronment for realizing live electronic music that I
named in honor of Max Mathews. Three currently
supported computer programs—Max/MSP, jmax,
and Pd—can be considered as extended implemen-
tations of a common paradigm I refer to here as
““Max.” The Max paradigm appears to be stable
enough now that a printed description of it no
longer risks becoming too quickly outdated. We
can now usefully assess what Max (the paradigm)
does well, what it does less well, and what we can
all learn from the experience. The Dartmouth Sym-
posium on the Future of Music Software, organized
by Eric Lyon, offers the perfect occasion to start
this project. I apologize in advance if, for obvious
reasons, parts of this article might not seem per-
fectly objective or impartial.

The Max paradigm can be described as a way of
combining pre-designed building blocks into con-
figurations useful for real-time computer music
performance. This includes a protocol for schedul-
ing control- and audio-rate computations, an ap-
proach to modularization and component
intercommunication, and a graphical representa-
tion and editor for patches. These components are
realized differently in different implementations,
and each implementation offers a variety of exten-
sions to the common paradigm. On the surface,
Max appears to be mostly concerned with present-
ing a suitable graphical user interface for describing
real-time MIDI and audio computations. However,
the graphical look and editing functions in Max are
not highly original, and most of what is essentially
Max lies beneath the surface.

In my experience, computer music software most
often arises as a result of interactions between art-
ists and software writers (occasionally embodied in
the same person, but not in my own case). This in-
teraction is at best one of mutual enabling and mu-
tual respect. The design of the software cannot help
but affect what computer music will sound like,

Computer Music Journal, 26:4, pp. 31-43, Winter 2002
© 2002 Massachusetts Institute of Technology.

Max at Seventeen

but we software writers must try not to project our
own musical ideas through the software. In the
best of circumstances, the artists remind us of their
needs—which often turn out quite different from
what either of us first imagined. To succeed as
computer music software writers, then, we need
close exposure to high-caliber artists representing a
wide variety of concerns. Only then can we can
identify features that can solve a variety of differ-
ent problems when in the hands of very different
artists.

Many of the underlying ideas behind Max arose
in the rich atmosphere of the MIT Experimental
Music Studio in the early 1980s (which became
part of the MIT Media Lab at its inception). Max
took its modern shape during a heated, excited pe-
riod of interaction and ferment among a small
group of researchers, composers, and performers at
IRCAM during the period 1985-1990; writing Max
would probably not have been possible in less stim-
ulating and demanding surroundings. In the same
way, Pd’s development a decade later would not
have been possible without the participation of the
artists and other researchers of the Global Visual
Music Project, of which I was a part. My work on
Max and its implementations has been in essence
an attempt to capture these encounters in software,
and a study of Max will succeed best if it considers
the design issues and the artistic issues together.

Background and Influences

The Max paradigm and its first full implementa-
tion were mostly developed over the period 1980~
1990, drawing on a wide variety of influences. The
most important was probably Max Mathews’s
RTSKED program (Mathews and Pasquale 1981),
some of whose key ideas also appeared in Curtis
Abbott’s earlier 4CED program (Abbott 1980).
RTSKED attacked the problem of real-time sched-
uling of control operations for a polyphonic synthe-
sizer.

Puckette 31

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



Whereas Mathews’s earlier GROOVE program
(Mathews and Moore 1970) emphasized the han-
dling of periodically sampled control voltage sig-
nals, the notion of control in RTSKED was one of
sporadically occurring events that caused state
changes in the synthesizer. For instance, starting a
note in RTSKED might involve setting the fre-
quency of an oscillator and triggering an envelope
generator. This is similar in style to the “note
card”” approach of the Music N languages, which
have an explicit, instantaneous action time. Hence,
the Music N languages are better suited to describ-
ing a keyboard instrument than, for example, the
continuously changing position and downward
force of a violin bow.

The main problem addressed in RTSKED was
how to replace the note card in the situation of
real-time performance where the action time is not
predefined. (Other parameters might not be prede-
fined either, but the chief difficulty seems to be
presented by the time parameter.) RTSKED mod-
eled the performance as a collection of tasks run-
ning in parallel. For example, each task might have
responsibility over a specific synthetic voice. The
timing of the tasks was controlled by wait func-
tions and triggers. Only one task ran at a time, but
the running task could relinquish control at any
time by calling a wait function and specifying a
trigger for which to wait. Triggers could come from
real-time input (the keyboard, for example) or be
“fired” by other tasks.

This separation of the real-time control problem
into separate tasks was a key advance necessary for
the computer to act as a musical instrument. Previ-
ously, computer music programs (and indeed al-
most all computer programs in general) enforced a
sequence of actions on the user. The separation of
the program into parallel tasks permitted the user
to control the sequence of execution of the program
by selecting which task to trigger next. For exam-
ple, in a multi-tasking environment, we could de-
scribe a piano as 91 tasks: one for each key and
pedal. The performer—the piano ““user’—chooses
in which order to trigger the 91 tasks and how
many times they will be triggered. The piano en-
forces no pre-determined sequence.

This notion of task can be seen clearly in the
boxes of the Max paradigm, which ““trigger’’ each

32

other via their connections. The idea predates the
invention of MIDI (and Max was never conceived
as a MIDI program), but the availability of MIDI in-
put and output for Macintosh computers was con-
venient for early Max users. MIDI shares the
sporadic quality of control events which have their
roots much earlier in the Music N programs (and
even much earlier still, in the clavier keyboard that
MIDI models). The parallelism so visually apparent
in a Max patch is intended to allow the user to
make computer programs that follow the user’s
choices, not the program’s. This was necessary so
that Max patches could work as musical instru-
ments.

A second, crucial influence was that of my
teacher Barry Vercoe, under whom I studied be-
tween 1979 and 1987. Mr. Vercoe, himself a stu-
dent of Mr. Mathews, is most widely known as the
author of Csound (originally called Music 11), but
his less-acknowledged work on real-time computer
music systems—dating back to the mid 1970s with
the design of a real-time digital synthesizer, and
continuing today—will perhaps someday be ac-
knowledged as his most important contribution to
the field.

Most of the advances in Csound over previous
Music N languages lay in its highly refined control
structure. Although other Music N systems were
in some ways much more flexible (Music 10, for in-
stance), their flexibility derived from allowing the
user to write code directly in the underlying imple-
mentation language—often the machine’s assembly
language. Csound, on the other hand, presents con-
structs in its own language for solving musical
control problems. Some of these constructs look
baroque (e.g., tigoto), but the central concepts—
initialization, re-initialization, and performance—
provide a way to specify control structure and
sample computation in a tightly integrated way.

This thoughtful approach to control issues also
guided Vercoe’s development of the Synthetic Per-
former (Vercoe 1984; Vercoe and Puckette 1985),
which first ran on a 4X machine at IRCAM. The
Synthetic Performer demonstrated real-time score
following, in which a computer performer automat-
ically synchronized itself with a live player playing
a different part. Roger Dannenberg discovered score

Computer Music Journal

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



following independently and showed it the same
year (Dannenberg 1984). Dannenberg’s algorithm
performed the analysis portion of the problem more
robustly than Vercoe’s. However, whereas Dannen-
berg’s design was concerned only with controlling
the tempo of a sequencer, Vercoe’s system worked
at the audio level, obliging him to tackle the prob-
lem of managing envelope generators in the face of
changing tempi. A representative task would be to
guide a glissando to reach a specific note on a fu-
ture downbeat whose arrival time is constantly be-
ing re-estimated in the face of new tempo
information.

By the 1986 International Computer Music
Conference in the Hague, many researchers were
showing their work on the abstract problem of
scheduling real-time computer music performance
(Anderson and Kuivila 1986; Boynton et al. 1986;
Favreau et al. 1986; Puckette 1986). The systems
proposed differed in their use or non-use of context
switching and preemption, the design of queues for
scheduled future tasks, the implementation plat-
form and language, and many other respects; but
many of the threads that fed into the Max design
can be seen there.

Another aspect of Max is its graphical user inter-
face (GUI). The Max GUI has many antecedents. In
1980, while studying under Barry Vercoe, I saw the
Oedit system by Richard Steiger and Roger Hale.
This system, apparently never described in a pub-
lished paper, allowed users to design Music 11 or-
chestras using a visual “patch language.” Many
other graphical patch languages—both for music
and for other applications—had appeared by 1987
when I started writing the Max “‘patching” GUL
Although several specific elements might have
been novel—at least in the computer music con-
text—the overall idea of a graphical patch language
was not.

Development of Max, jmax, and Pd

The story of how the Max paradigm and its imple-
mentations progressed to their current state is
probably not well represented by any one person’s
understanding of it, but the following first-person

history should at least shed some light on things.
Others may wish to add to or amend this account.

The first instance of what might now be called
Max was Music500, which I worked on in Vercoe’s
laboratory starting around 1982 and one aspect of
which was reported in some detail (Puckette 1984).
There was no graphical front end. The system con-
sisted of a control structure inspired by RTSKED
and a synthesis engine distilled from Music 11. The
control and synthesis environments were separate.
Control was considered as a collection of processes
that ran in parallel (logically, at least) and could be
implemented on parallel processors. The “orches-
tra’” (or synthesis process) looked like any other
control process, and its communication with the
other control processes obeyed the same rules as
they obeyed among themselves.

The system was intended to run on machines
where the “‘number crunching’”’ could not be real-
ized in a high-level language. The specific hardware
envisioned, the Analogic AP500 array processor, had
a bit-sliced, micro-codable number-crunching
engine and a ““controlling” microprocessor. The or-
chestra language was written to be interpreted (in
vector unit generators) in the arithmetic unit, and
the control processes were to be multi-tasked in
the microprocessor. The idea of using a multi-
tasking control structure came directly from
RTSKED.

Music500 never got to the point of making sound
in real time. By 1984, when I was still reporting on
Music500, Barry Vercoe had written the Synthetic
Performer at IRCAM, and he invited me to work
with him in Paris in Summer 1985. I got access to a
4X machine—then the most powerful digital syn-
thesizer/audio processor in the world—just as it
came out in its printed-circuit-board version. The
4X, having no jump instruction, could not be made
to fit into the Music500 orchestra model. (Besides,
there was an excellent, text-based ‘“patch language”
available, described by Favreau et al. in 1986.) As a
result, I only kept Music500’s control structure in
programming the 4X, renaming it ‘‘Max”’ to ac-
knowledge the fundamental influence of RTSKED.
There was no graphical programming language, as
the 4X’s control computer had no GUI support, and
I was still skeptical of GUI-based software at the

Puckette 33

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



time. The ““patch’’ was specified in Max’s com-
mand line by simply concatenating the creation ar-
guments of all the objects desired. Because objects
could have only one inlet and one outlet apiece in
that version, connections could be specified simply
by naming each object and listing its destination
objects, by name, in its creation arguments.

One of the first uses of Max was supporting
Vercoe’s Synthetic Performer, a version of which
we developed together at IRCAM in 1985. The
command-line patch consisted essentially of four
objects: a pitch tracker; the score follower itself
(whose input was pitches and whose output was
tempo); a tempo-controllable sequencer, and a con-
troller for a sampling synthesizer running on the
4X (which acted as an output device roughly analo-
gous to Max’s noteout).

This 4X version of Max made its stage debut in
April 1987 in Thierry Lancino’s Alone and Philippe
Manoury’s Jupiter, which were both premiered dur-
ing IRCAM'’s tenth anniversary concerts. That
early version of Max imposed some almost mad-
dening limitations. There was a complicated and
lengthy compilation process to prepare the 4X pa-
rameter updates so that Max could use them. De-
bugging was sometimes very difficult.

After this experience, I tried implementing the
Max control paradigm in two separate Lisp envi-
ronments before once again rewriting it as a C pro-
gram on a Macintosh starting in Summer 1987.
(The Macintosh in question was brought to IRCAM
by David Wessel, without whose efforts I and the
rest of IRCAM might have entirely missed out on
the personal computer revolution.) The new Mac-
intosh version of Max, which eventually grew into
what is now Max/MSP, was first used on stage in a
piece by Frédéric Durieux in early 1988. But it was
Philippe Manoury’s Pluton, whose production
started in Fall 1987 and which premiered in July
1988, that spurred Max’s development into a usable
musical tool. The Pluton patch, now existing in
various forms, is in essence the first Max patch.

To realize Pluton, we connected a Macintosh to
a 4X with a MIDI cable, using the Macintosh as a
““control computer”” and keeping all audio compu-
tations on the 4X. We thus did not have to confront
the problem of specifying the audio signal patch

34

graphically; we still used the 4X patch language,
this time together with ad hoc C code to convert
MIDI messages to 4X parameter changes. Owing to
the limitations of the day (for example, one could
have a GUI or a programmable DSP engine, but not
both in the same address space), Max became a
““MIDI program.” There was nothing fundamental
in Max that was derived from MIDI, however; as
far as Max was concerned, MIDI was an input/out-
put interface and nothing more.

The next two steps were taken in parallel. First,
Max was commercialized through the efforts of Da-
vid Zicarelli. Zicarelli has persisted in this project
for about thirteen years, withstanding the bank-
ruptcies of two companies for whom he worked,
and finally starting his own, Cycling74. The world
of computer music has rarely if ever seen a soft-
ware developer of greater dedication and fortitude
than Zicarelli.

At the same time, I joined a team at IRCAM di-
rected by Eric Lindemann, charged with creating a
successor for the 4X. As Manoury pronounced,
““The 4X is an old lady now: still beautiful, but too
expensive.” Lindemann designed an extremely
powerful audio signal processor called the IRCAM
Signal Processing Workstation or ISPW (Lindemann
et al. 1991). Among its many advances over the 4X,
the ISPW offered a jump instruction. I took advan-
tage of this to add to Max a collection of ““tilde ob-
jects” to do audio signal processing (Puckette
1991a).

This forced two changes on the IRCAM fork of
Max: it was necessary to port the graphics layer to
a different window system, and, more fundamen-
tally, it became necessary to separate the “'real-
time”’ portion of Max from its GUL Now, the
real-time portion ran on the ISPW and the GUI on
the host computer, a NeXT Cube. Moreover, the
real-time component, which I called Faster Than
Sound or FTS (Puckette 1991b), had to run on mul-
tiple processors without the benefit of shared mem-
ory.

By 1991, the time appeared ripe to make Max/
FTS available on other architectures besides the
ISPW. Over the next two years, Joseph Francis and
Paul Foley got Max/FTS running under Unix and X
Windows. The Max/FTS project has since been ex-

Computer Music Journal

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



tensively reworked and extended at IRCAM by a
team led by Frangois Déchelle, who now distribute
their version under the name jmax.

Meanwhile, I moved to UCSD in 1994, and, see-
ing several improvements I wished to make in
Max, started writing a new program named Pure
Data, or Pd (Puckette 1997). I made Pd an open-
source program from the beginning (and IRCAM
later did the same with jmax). For Pd, I wrote new
tilde objects as in Max/FTS, which Zicarelli then
used as a point of departure for what he called
MSP, with which Cycling74’s Max also became
capable of audio signal processing. (By 1996 or so,
generic personal computers had finally become
powerful enough to make this worthwhile.)

In 1995, Mark Danks started developing GEM
(Danks 1997), which has matured into a three-
dimensional graphical rendering extension to Pd
now maintained by Johannes Zmolnig. Other unre-
lated extensions to Max/MSP and Pd are available
which deal in various ways with video. Thus, the
Max programs are now addressing visual as well as
audio domains.

Max/MSP, jmax, and Pd can now be seen as three
very different implementations of the same funda-
mental idea, each with its own extensions that are
not available on the others. It would be ill-advised
to discuss the relative merits of the three imple-
mentations here, because the situation is con-
stantly changing. However, it is actually possible
to port patches back and forth between the three,
so that users who work with their common fea-
tures can at least feel that they will have some op-
tions if the specific implementation they depend
on falls out of repair.

Design Issues in Max

By 1993, Max was in wide enough use to attract
the bemused attention of computer science re-
searchers, for example Desain and Honing (1993),
who wrote, “For some time we have been surprised
at the success of Max and the enthusiasm of its
users.” The design of Max breaks many of the rules
of computer science orthodoxy, sometimes for rea-
sons of practicality and sometimes of style. In the

following paragraphs I attempt to give a rationale
and critique of the fundamental elements of Max’s
design (see also Puckette 1991a).

Max is oriented toward processes more than data.
(There is no built-in notion of a musical ““score,”’
for example.) If we think of a Max patch as a
collection of boxes interconnected by lines, the ex-
pressiveness of Max comes from its interconnec-
tion and intercommunication facilities, whereas
the contents of the boxes themselves are usually
hidden from the user. Because the only facilities for
storing large amounts of data are encapsulated
within individual boxes, one cannot use Max as
such to see or edit collections of data. To address
the clear need for data handling facilities, certain
types of boxes (such as table) offer their own edi-
tors in their own windows, each in its own way.
(Pd offers a new approach to the problem of data
representation, but it would be premature to de-
scribe it here.)

Because each type of box is free to store data in
its own way, there is no uniformity across Max in
how data is stored. Certain ad hoc mechanisms are
also invented on a box-by-box basis for data shar-
ing; the lack of uniformity of approach is a prob-
lem, but on the other hand, enforcing a unified
approach might have presented even greater prob-
lems.

Officially at least, communications between
boxes all take place via Max messages, which are
extremely simple in structure and standardized in
content. Messages are linear lists of atoms, which
in turn may be either numbers or strings. (In Max
and jmax, the numbers may be of two distinct
types; Pd eliminates this distinction.) Messages are
always headed by a symbol, which acts as a
Smalltalk-style message selector. (Messages may
appear to begin with a number, but for these mes-
sages Max always provides an understood selector,
such as 1ist.) There is disagreement among com-
mentators as to whether Max should be considered
“object-oriented” in light of this message-passing
interface, or whether it should be denied the title
as lacking many other features common to object-
oriented programming languages.

A box’s leftmost inlet can take messages with
any selector for which the box has a defined behav-

Puckette 35

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



ior. In this way, boxes may have many more behav-
iors than inlets, and new ones may be added
without changing the box incompatibly. Other in-
lets (besides the leftmost one) only handle one se-
lector each and should be reasonably few in
number; they are best reserved for messages that
are frequently needed in a patch (such as the chan-
nel number in a MIDI output box). This design rep-
resents a compromise intended to increase the ease
of interconnection without fundamentally restrict-
ing the number of selectors a box can take. Its most
important inconveniences are probably the confu-
sion caused by the hidden selectors, and the occa-
sional necessity of ‘‘prepending” the selector 1ist
or symbol to a message.

The extremely simple structure of the messages,
as well as the standardization of the use of selec-
tors such as bang, are meant to maximize the in-
terconnectability between boxes and to minimize
the amount of “glue’’ needed. Messages are also
easy to type and to read; indeed, the ““message box”’
simply holds a message.

A glaring departure from this principle is in the
handling of audio signals. The Max design origi-
nally looked at the problem of real-time computer
music performance as essentially a control prob-
lem, and the facility for patching audio signals
from one box to another departs radically from the
scheme. Max provides a separate data type for au-
dio signals which does not mix smoothly with
messages; conversion from audio to messages is
problematic, and the scheduler treats control- and
audio-rate processing separately. I cannot offer a
better solution than what Max provides. I did once
design a message semantic that actually included
both modalities in one common generalization, but
it appeared to be too general to be useful in prac-
tice.

In general, the design of Max emphasizes text
boxes (objects and messages) in which the user
types a message to define the contents of the box.
In this respect, Max is highly unusual among
graphical programming environments. There are at
least three rationales for this choice. First, users
will always require a text interface of some sort to
specify parameters (called creation arguments in
Max), so to rely entirely on text appears to be the

36

simplest solution possible. Second, having more
than ten or twenty distinct icons makes it difficult
to remember which icon corresponds to which
functionality; text works better mnemonically.
Third, the text representation appears to convey
more information per unit area of screen than icons
can. In most cases, boxes in Max do not rely essen-
tially on dialog windows or other forms of display
modality. Ideally, the text content of a box should
determine it entirely—at least at the time of its
creation. A central design principle of Max is that,
to the extent possible, the patch that appears on
the screen should provide a full documentation of
what is happening. For this reason, boxes avoid hid-
den variables (that could be managed via dialog
boxes, for example), and an object box’s entire
state—at least on startup—should be seen in the
text inside the box.

This is also the reason behind the choice not to
make state changes in objects persistent. When a
previously saved Max patch is reopened, all the val-
ues that had been sent to boxes’s inlets are forgot-
ten and replaced anew by values supplied by the
creation arguments (or, failing that, by their default
values). This is done because otherwise a patch’s
behavior could depend critically on the fact that a
““+” box, for example, had some specific value left
over in its inlet, even after all visible traces of its
provenance were gone.

In certain cases (tables, glists, etc.) it becomes
necessary to show more state than the user might
wish to see in the context of its use. In these cases,
Max departs from principle and offers specialized
editors that live in sub-windows to manage the
data. This is an aesthetically unfortunate compro-
mise, but it is necessary because Max’s fundamen-
tal design does not deal with issues of data
management.

The Max design strives for simplicity and explic-
itness throughout. Figure 1 shows an example, in
this case implemented in Pd version 0.35, of a
patch with two oscillators, the upper one control-
ling the frequency of the lower one. The economy
of gesture in this patch is achieved not by design-
ing modules such as tabosc4~ to be musically in-
telligent, but rather by making them as transparent
as possible—transparency being an opposite of in-

Computer Music Journal

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



Figure 1. A concise patch
in Pd version 0.35, show-
ing two oscillators. The
higher oscillator controls
the frequency of the lower
one.

1000

500

arrayl

ED

taboscd~ arrayl

hb/

_

1
tabosc4~ array2 0

A\

1
dac~ 1 0.1
array2

-0.1

\/

telligence. The lack of “intelligence’” in no way
limits the expressiveness of the visual language. In-
stead, expressiveness is enhanced by concreteness
(the opposite of abstraction), directness, and
straightforwardness.

Scheduling

The scheduling algorithm of Max is exceedingly
simple, although it took several years to develop. In
its final form, it differs from the scheduling algo-
rithm of RTSKED primarily in its approach to data
handling. In Max, objects are usually activated by
passing messages to them from other objects. The
mechanisms for “triggering’’ an action and for pass-
ing data back and forth between objects are unified.
(Messages, like bang for example, might be empty

of data, in which case they may be considered pure
triggers.) The unification of data ““flow’ and trigger-
ing was suggested by the piano metaphor, in which
the velocity of playing a note is naturally included
as part of the fact that the note was played. (This
does not make Max a true dataflow language, how-
ever; in general, dataflow languages seem not to
capture real-time event processing well.)

In addition to the visible patch cords, another
source of triggering is the passage of logical time.
Formally, this appears to the object as just another
trigger, although for speed and simplicity it is
coded as a plain function callback. Logical time
marches forward in a purely deterministic way, ir-
respective of any real-time delays engendered by
CPU load or the operating system. This determin-
ism is crucial for making Max patches ‘“debugga-
ble.” If something goes wrong, the problem is
usually easy to reproduce and track down, and if a

Puckette 37

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



patch works in rehearsal, it has a good chance of
working in performance.

Max follows the piano metaphor also in that ob-
jects do not specify what they wait for, but instead
they explicitly choose which other objects to trig-
ger. In other words, the choice is up to the trigger-
ing object, not the triggered one (the player, not the
piano). Graphically, this is indicated by fan-in at an
object’s main inlet; the object does not control
which line will activate it next. Thus, the graphical
design and the scheduler match well.

On the other hand, a severe problem arises for
connections that fan out, for which no solution
seems wholly adequate. The order in which the
fanned-out triggers are fired may affect the aggre-
gate result. Unless the fanned-out messages are
given an explicit order of execution, fan-out can
give rise to indeterminate behavior. One possible
solution to this problem, implemented in Cycling
'74’s Max, is to sort the recipients of each single
outlet according to their screen position. This has
the advantage that one can in principle see how the
patch will work directly from its screen appear-
ance, but the disadvantage that merely moving
boxes on the screen (to tidy them up for example)
can change a patch’s behavior. (Furthermore, it is
not clear what rule non-local connections such as
send/receive should obey.) Jmax and Pd each be-
have in other ways which have their own advan-
tages and disadvantages. The best solution is for
the user to place trigger objects to disambiguate
the situation when the order of execution of fan-
out matters. Perhaps a good way will one day be
found to detect these situations automatically and
warn the user of them.

Users of Max are often surprised by the right-to-
left order in which multiple outlets of a single box
are customarily fired. This is done because a box’s
““main” inlet (the leftmost one) is used to trigger
outputs, and the other inlets are almost always
used only to set internal state in the box. For a cal-
culation to work correctly, the leftmost inlet must
therefore be triggered after all relevant messages
have been sent to the other inlets. If one accepts
that the first inlet should be the ““hot” one, it fol-

38

lows that it should be the last to receive a message,
and if a single object is furnishing two or more of
the messages, the right-to-left order will be the cor-
rect one.

Many thorny scheduling problems arise from the
uneasy marriage of audio and control computation
in Max. The fact that audio signals are computed
in blocks of at least one sample (and usually 64 or
more for efficiency’s sake) implies that control
computations have an inherent grain, in that they
can only affect DSP computations on discrete sam-
ple block boundaries. This can be a serious problem
when building granular synthesis patches, for ex-
ample, in which control computations might be re-
quired to decide the onset time of individual grains.

Another problem is simply that it is inelegant to
have audio computation obey different semantics
from control computations. Control computations
are inherently order-dependent, whereas the audio
sample clock is predictable so that dataflow seman-
tics are more appropriate for audio computations
than the message-passing model that Max adopts
for control calculations. The two worlds coexist
somehow in the same patch, but not without caus-
ing confusion and offending computer scientists. In
Max/MSP and jmax, audio connections are drawn
in a different style from control ones, which at
least helps reduce confusion.

Yet another problem is that it is extremely
clumsy to perform sample-dependent decision
making of the sort that one would use, for exam-
ple, to trigger a control action at a zero crossing in
an audio signal. When control computations are al-
lowed to interrupt signal computations, the results
may be difficult to predict or interpret.

All these problems grow in severity when video
or computer graphics computations are added. Try-
ing to overcome them might open up fruitful areas
of future research. At the moment, however, the
Max paradigm seems at least to handle the major-
ity of situations well enough, despite all of its limi-
tations, to be a useful system in practice. To
paraphrase Winston Churchill, Max is the worst
possible solution, except for all the others that
have been tried.

Computer Music Journal

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



Programming in Max

Musicians have often used Max as a programming
environment, at which Max succeeds only very
awkwardly. There is no concept of scoping or
namespaces in Max; all symbols and their bindings
live in one flat space. This decision was made to re-
move a layer of complexity that did not seem
strictly necessary in the context of computer music
production, in order to make Max as accessible as
possible to people who are not professional com-
puter programmers.

Further, Max lacks any notion of linear “control
flow”” such as is fundamental in any real-world pro-
gramming environment. The whole notion of con-
trol flow, with loops, conditionals, and subroutines,
is easy to express in text languages, but thus far,
graphical programming languages have not found
the same fluency or economy of expression as text
languages have.

Rather than a programming environment, Max is
fundamentally a system for scheduling real-time
tasks and managing communication among them.
Programming as such is better undertaken within
the tasks than by building networks of existing
tasks. This can be done by writing “externs’”’ in C
or C++, or by importing entire interpreters (Forth
or Scheme, for example). The exact possibilities de-
pend on the implementation.

Musical Constructs

The design of Max goes to great lengths to avoid
imposing a stylistic bias on the musician’s output.
To return to the piano analogy, although pianos
might impose constraints on the composer or pian-
ist, a wide variety of styles can be expressed
through it. To the musician, the piano is a vehicle
of empowerment, not constraint. The fact that the
output is almost always going to be recognizable as
piano music is not a cause for criticism. The com-
puter software analogue is that Max (for example)
should not so restrict the musician’s creativity that
the result sounds like ““Max,”” although perhaps we
should forgive it for sounding like a computer, as

long as sounding like a computer is understood not
to imply any stylistic tendency.

To what extent does Max achieve this? It may be
too early to know, because Max is still a recent
phenomenon when considered in the timescale of
musical stylistic development. Still, it is possible
to discuss how the Max design aims for stylistic
neutrality and where it might succeed or fail.

On starting Max, the user sees nothing but a
blank page—no staves, time, or key signatures—
not even a notion of “‘note,” and certainly none of
instrumental ‘“voice” or “‘sequence.” Even this
blank page carries stylistic and cultural freight in at
least one interesting respect: the whole idea of in-
corporating paper in the music-making endeavor is
central to Western art music, for which many other
musics have no use at all. Musical practices that do
not rely on paper may in some cases have much
less use for computers than have the more West-
ernized ones.

Perhaps we will eventually conclude that no
matter how hard one tries to make a software pro-
gram culturally neutral, one will always be able to
find ever more glaringly obvious built-in assump-
tions. But this is not a reason to stop designing new
software; on the contrary, it gives hope that there
may be many exciting discoveries still to be made
as more and more fundamental assumptions are
questioned and somehow peeled away.

Software and Technique

On one level, the process of making computer mu-
sic involves first writing software and then making
music with it. A first measure of the utility of the
software is its longevity. However, merely writing
software with longevity in mind does not directly
serve the music maker. Computer music software
can also encode ideas that reach beyond any indi-
vidual implementation of them. Computer music
software’s offerings are of two types. They em-
power the user directly through their presentation
as a working environment; but also, they encode
advances in computer music practice. The software
designer’s most direct challenges are to make the

Puckette 39

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



software useful to a wide variety of tasks and to
make it last as long as possible. But the good, pe-
rennial ideas will jump from implementation to
implementation anyway.

For example, the wavetable oscillator used in Fig-
ure 1 made its first appearance in Mathews’s Music
II (two, not eleven) in the late 1950s. Music II was
only one in a long sequence of Music N programs,
but the idea of wavetable synthesis has had a per-
vasive influence throughout the computer music
discipline.

At its best, software creation is about enabling
people to use the inventions of our day and not
about presenting them with alternative inventions
that might spring from the mind of the software de-
veloper. Invention is an important part of cultural
evolution, but we should not confuse invention
with software design. Nor should software design-
ers build their private inventions into the software.
In situations such as Music I where it was neces-
sary to invent something as part of the software de-
velopment, the best inventors (such as Mathews)
present the invention and its carrier software as
two separate, distinct things.

Durability

Two competing desiderata tug at either side of the
software developer. On the one hand, we want soft-
ware to do everything, and our notion of “every-
thing”” grows broader every year. On the other, we
require stability, so that we can open last year’s
electronic mail or play a piece of computer music
composed six months ago. Every software designer
tries to provide the widest possible choice of func-
tionality and simultaneously minimize the risk of
falling out of maintenance. The breadth of func-
tionality offered by a new piece of software seems
to depend mostly on the ambition of its designer.
Its longevity, on the other hand, depends partly on
luck, partly on the perseverance of designers (and
their employers), and partly on designers’s fore-
sight.

The durability of the musical ideas expressed in a
medium such as Max is not necessarily limited by
any specific implementation of Max. The patch of

40

Figure 1, for example, offers a nearly complete de-
scription of its functionality, and any remaining
imprecision would be quickly resolved by looking
at the document as a text file. (This would reveal
the exact numeric content of the two tables.) One
would not need a running copy of Max or Pd to re-
interpret those few lines of text. Ideas expressed in
Max can in principle outlast their implementation.

This transmissibility of practice and ideas does
not depend in any essential way on reuse of code,
in contradiction to the preaching of the computer
science community. Indeed, if object-oriented pro-
gramming in the sense of inheritance structures is
essentially about code re-use, there does not seem
to be any essential reason to use object-oriented
coding constructs either. Of course, elegance in
code does matter and is a good thing, but it has
nothing to do with the creative adaptation of the
great underlying ideas that make up the true con-
tribution of computer music to our larger culture.
And as to elegance, we can leave it to others to ar-
gue the relative merits of different programming
techniques and languages.

Musical practice is not hopelessly embedded in
music software, any more than the concept of pow-
ered flight is embedded in the original Wright
brothers’s airplane. If we could dig up the original
plane, it would in no way help us fly any better
than we do now. The essential thing is to maintain
the practice. The artifact is fun to have around, of
course, but only as a museum piece.

External Issues

Often, aspects of software that are external to its
theoretical design have a strong positive or nega-
tive effect on its ultimate usefulness. This may
partly depend on the way the software is placed in
the social fabric. In this respect, the various imple-
mentations of Max have occupied a variety of
niches. The original program named “Max’’ was
written in a very different world with different mo-
dalities of software use and dissemination from to-
day. The existence of three present-day
implementations is partly a reflection of the many
changes that have taken place over the last 17

Computer Music Journal

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



years. One major change is that computer music
software has now broken out of the confines of
what, in 1985, was a rather insular ““computer mu-
sic community.”

Today’s low computer prices promise to make
possible more subtle encounters than in the past
between, for example, Europeans and inhabitants of
their former colonies. Instead of heading out into
the forest with a machine to record the local artists
(as we of Euro-centric cultures have been doing at
least since Bartok’s time), we can now initiate elec-
tronic mail conversations. People of almost any
community on earth can now record their own mu-
sic without the help of any modern Bartoks. And
people almost anywhere can or soon will be able to
acquire a computer and involve it in their music-
making.

This will make an increasingly audible change in
the music of the world. No longer will we hear
tapes in which Westerners invite non-Westerners
into the recording studio and later manipulate re-
cordings of them playing their instruments. It is
too early to predict what the new music will sound
like, but it is clear that the door is now open for
non-Western practices to make a much more pro-
found imprint on electronic music than as mere
source material. I expect non-Western approaches
to electronic music to be a source of much energy
in the near future.

But we have not as yet caught up with the prom-
ises held out by the rapid drop in the price of com-
puter hardware. Complete computer systems can
be built for under US$ 400, and the addition of an
amplifier and speakers gives one the tools to start
making computer music. But this assumes one has
the necessary knowledge to build a system, locate
and install good free software, and then run it.
Many commercial interests work against such
users, because they would prefer to make the com-
puter cost several thousand dollars and the soft-
ware several thousand more.

An essential element in the democratization of
computing and of computer music is the nurturing
of local knowledge bases. Certain forward-looking
music educators are investing many hours trying to
encourage students to build their own computers. I
hope someday to see an international culture of

home-built computers and homemade computer
music software. In the past, the affluent West has
developed its software, stamped out millions of
CDs, and sold them to whomever would buy them.
In the future, I would like to see the centers of re-
search and learning import software from the rest
of the world.

Communities are necessary for knowledge to
grow, especially with non-commercial operating
systems such as Linux. (If one does not have
friends also running Linux, installation and config-
uration can be a daunting task.) But I can imagine a
future in which computer music expertise (includ-
ing how to assemble a machine, install an operat-
ing system, and run software) is at least within a
village or two of most people of the world.

The computer music community is similar to
the Linux community in that it can grow among
small groups with only occasional need for outside
contact beyond what a modem can provide. To em-
power this, it is important that the software not
come with its own cultural freight but that it adapt
to whatever realities exist where the users live.
This is exactly what typifies good software devel-
opment in general.

This is not what typifies the products of today’s
software giants. For example, upon starting a com-
mercial spreadsheet program, the user sees some-
thing very different from the empty sheet of virtual
paper that Max offers. And since the page is not
blank at the outset but is structured, the user will
be constrained to move within the ordained struc-
ture. The whole business of the software hegemon-
ists is to impose context in the form of proprietary
file formats, operating system features, and other
such constructs. Their concern is not in letting
people do their own thing, and their products will
always impede—rather than encourage—progress.

With that said, however, there is no reason peo-
ple should not sell software. {As Joel Chadabe once
told me, that is a very effective way of getting it in
front of people who would not be able to get it oth-
erwise.) We are extremely lucky to have a company
like Cycling74 so that even if one lives in Madagas-
car, one can download a version of Max, run it, and
send an electronic mail to someone if there is a
problem. The existence of software companies is a

Puckette 41

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



good thing, as long as they do not engage in preda-
tory practices.

This is complemented by the other kind of em-
powerment that open-source software provides: one
can customize it to a much greater extent than is
possible with commercial software, simply owing
to the absence of the constraints faced by any dis-
tributor of commercial software. The marketplace
forces commercial software vendors to load their
products with features. Each of these features is a
potential barrier to portability—to one’s ability to
make the software run on a handheld computer or
on the microprocessor in a refrigerator or a car.
Generally, the more “‘bells and whistles” a piece of
software has, the less easily it can be customized
with features the software designer never consid-
ered. Even though good software writers can them-
selves dream of many things, the software user can
always think of something else. Although we soft-
ware writers try above all else to avoid imposing
restrictions or obstacles, we never succeed entirely.
It might be that some of the obstacles presented by
today’s software are so fundamental that we cannot
even see them.

Computer Science or Computer Music?

Style is important in software (not so much the
internal style of programming, but the style with
which the software engages the user). We welcome
software if its external style pleases us. Well-
designed software enhances the workspace in the
same way that well-designed furniture does, not
only in functionality but also in the stylistic
choices that enhance, and do not depress, the qual-
ity of our environment.

It is difficult to find rational arguments to ex-
plain Max’s underlying stylistic tendencies toward
black and white over color, blank pages over forms,
and plasticity over hierarchical structures. Max is
not about computer science but about computer
music. Although many computer science results
make their way into Max’s design, that design does
not bow to the computer science orthodoxy and its
rigid dogma about software design and implemen-
tation. Many other software projects in computer

42

music have kept much closer to the computer sci-
ence line; however, the most successful ones
(Csound, for example) have primarily obeyed stylis-
tic over computer science criteria.

If the success of Csound (and the as yet less
proven success of Max) baffle and sometimes annoy
the computer science community, the failing may
come from a lack of understanding of the impor-
tance of style and even aesthetics in software de-
sign and implementation. Computer science has
never found a metric for determining whether or
not a computer program is fun to use.

We speak of “playing”’ a violin, not “working” it.
Although music making entails a tremendous
amount of work, it has to look like play, even to
feel like play, if the musician is ever to survive the
ordeals of practice and rehearsal (not to mention
the privation of working for little or no pay). If us-
ing a computer program feels too much like
“work,” musicians will not—and should not be
asked to—do it.

The computer should ideally feel in the musi-
cian’s hands like a musical instrument, needing
only to be tuned and then played. Has Max reached
this ideal? Certainly not, and neither has any other
piece of computer music software. I hope at least
that, in the long term, it will prove to have been a
step in a good direction.

References

Abbott, C. 1980. ““The 4CED Program.” Proceedings of
the International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 278-304.

Anderson, D., and R. Kuivila. 1986. A Model of Real-
Time Computation for Computer Music.” Proceedings
of the International Computer Music Conference. San
Francisco: International Computer Music Association,
pp. 3541.

Boynton, L., et al. 1986. “Midi-Lisp: A Lisp-Based Music
Programming Environment for the Macintosh.” Pro-
ceedings of the International Computer Music Confer-
ence. San Francisco: International Computer Music
Association, pp. 183-186.

Danks, M., 1997. “Real-Time Image and Video Process-
ing in GEM.” Proceedings of the International Com-

Computer Music Journal

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



puter Music Conference. San Francisco: International
Computer Music Association, pp. 220-223.

Dannenberg, R. 1984. “An On-Line Algorithm for Real-
Time Accompaniment.” Proceedings of the Interna-
tional Computer Music Conference. San Francisco:
International Computer Music Association, pp. 193~
198.

Desain, P., and H. Honing. 1993. “The Mins of Max.”
Computer Music Journal 17(2):3-11.

Favreau, E., et al. 1986. “Software Developments for the
4X Real-Time System.” Proceedings of the Interna-
tional Computer Music Conference. San Francisco: In-

ternational Computer Music Association, pp. 369-373.

Lindemann, E., et al. 1991. “The Architecture of the IR-
CAM Music Workstation.” Computer Music Journal
15(3):41-49.

Mathews, M. V., and F. R. Moore. 1970. “GROOVE: A
Program to Compose, Store, and Edit Functions of
Time.” Communications of the ACM 13(12):715-721.

Mathews, M. V., and J. Pasquale. 1981. “RTSKED: A
Scheduled Performance Language for the Crumar Gen-
eral Development System.”” Proceedings of the Inter-
national Computer Music Conference. San Francisco:
International Computer Music Association, p. 286.

Puckette, M. S. 1984. “The ‘m’ Orchestra Language.”
Proceedings of the International Computer Music

Conference. San Francisco: International Computer
Music Association, pp. 17-20.

Puckette, M. S. 1986. “Interprocess Communication and
Timing in Real-Time Computer Music Performance.”
Proceedings of the International Computer Music
Conference. San Francisco: International Computer
Music Association, pp. 43-46.

Puckette, M. S. 1991a. “Combining Event and Signal Pro-
cessing in the Max Graphical Programming Environ-
ment.” Computer Music Journal 15(3):68-77.

Puckette, M. S. 1991b. “FTS: A Real-Time Monitor for
Multiprocessor Music Synthesis.” Computer Music
Journal 15(3):58-67.

Puckette, M. S. 1997. “Pure data.” Proceedings of the In-
ternational Computer Music Conference. San Fran-
cisco: International Computer Music Association, pp.
43-46.

Vercoe, B. 1984. “The Synthetic Performer in the Context
of Live Musical Performance.” Proceedings of the Inter-
national Computer Music Conference. San Francisco:
International Computer Music Association, p. 185.

Vercoe, B., and M. S. Puckette. 1985. ““Synthetic Re-
hearsal: Training the Synthetic Performer.” Proceed-
ings of the International Computer Music Conference.
San Francisco: International Computer Music Associa-
tion, pp. 275-278.

Puckette 43

This content downloaded from
128.32.10.230 on Tue, 16 Sep 2025 23:39:49 UTC
All use subject to https://about.jstor.org/terms



	Contents
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43

	Issue Table of Contents
	Computer Music Journal, Vol. 26, No. 4, Languages and Environments for Computer Music (Winter, 2002), pp. 1-128
	Front Matter [pp. 2-3]
	About This Issue [p. 1]
	Letter
	Corrections to Ferreyra Interview [p. 4]

	Announcements [p. 5]
	John Pierce (1910-2002) [pp. 6-7]
	News [pp. 7-12]
	Dartmouth Symposium on the Future of Computer Music Software: A Panel Discussion [pp. 13-30]
	Max at Seventeen [pp. 31-43]
	How I Learned to Love a Program That Does Nothing [pp. 44-51]
	The CARL System: Premises, History, and Fate [pp. 52-60]
	Rethinking the Computer Music Language: Super Collider [pp. 61-68]
	Computer Music Languages, Kyma, and the Future [pp. 69-82]
	Reviews
	Events
	Review: Audible Interfaces Festival [pp. 83-85]

	Publications
	Review: untitled [pp. 85-87]
	Review: untitled [pp. 87-90]
	Review: untitled [pp. 90-92]
	Review: untitled [pp. 92-95]

	Recordings
	Review: untitled [pp. 95-96]
	Review: untitled [pp. 96-99]
	Review: untitled [pp. 99-100]
	Review: untitled [pp. 100-102]
	Review: untitled [pp. 102-104]
	Review: untitled [pp. 104-105]
	Review: untitled [pp. 105-106]
	Review: untitled [pp. 106-108]

	Products
	Review: PulsarGenerator Synthesis Software for MacOS [pp. 108-109]
	Review: Ableton Live Sequencing Instrument, Version 1.5 [pp. 109-112]


	Products of Interest [pp. 113-121]
	CD Program Notes [pp. 122-127]
	Back Matter [pp. 128-128]



