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Force Dynamics of Tempo Change in Music

JACOB FELDMAN, DAVID EPSTEIN, & WHITMAN RICHARDS
Massachusetts Institute of Technology

This paper reports a study of the quantitative shape of ideally executed
tempo decrease and increase (ritardando and accelerando) in music. Five
expertly performed samples of real music (two ritards and two acce-
lerandos from European classical music, and one sample of Venezuelan
[Yanomami] Indian barter chant) are analyzed, and each is found to be
a polynomial of degree at least two, and in some cases probably three—
not simply linear as had been previously reported, or exponential, as
is sometimes suspected. We formally develop a simple force model of
musical “motion,” in which the progression of music over time is con-
ceived of as being controlled by a mental analog of a mechanical force.
Each of the five observed tempo profiles is shown to be well accounted
for as the result of one of just two types of force event: (1) a linear force,
which produces a quadratic ritardando (or accelerando), and (2) a par-
abolic force, which produces a spline-shaped cubic tempo profile, a
ritardando that joins smoothly at both ends to adjoining regions of
constant tempo.

Introduction: Tempo Change in Music

Change of tempo in music is diagnostic of the interplay between mental
processes (cognitive, affective, and so forth) and formal musical structures,
since control over the exact pacing and mathematical pattern of a tempo
change is not normally notated explicitly in the score, but rather is ceded
completely to the intuitive judgment—the “ear” —of the performing mu-
sician. The slowing of the beat in a ritardando or the speeding up in an
accelerando, for example, signal purely mental phenomena. Moreover, the
control of musical timing must rest at a somewhat more abstract level than
that of an ordinary motor schema, such as the one that controls the swing
of a tennis racket. A long ritard, for instance, might require a very large
number of independent constituent motions to execute; a subset of these
contribute control to the timing of the ritard (i.e., those that produce a
note), but many others do not (e.g., bow recovery in stringed instruments).
Yet the skilled musician can keep track of the overall pacing of the

Requests for reprints may be sent to Jacob Feldman, who is now at the Rutgers Uni-
versity Center for Cognitive Science (Bldg. 3870, Rm. 108), Busch Campus, Rutgers Uni-
versity, Piscataway, NJ 088S55.
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186 Jacob Feldman, David Epstein, & Whitman Richards

ongoing music largely independently of the pacing of most of these in-
dividual motions, determining whether it is conforming correctly to his
or her abstract mental model of a ‘“natural-sounding” or “musical-
sounding” ritard.

We investigate the mathematical shape of the tempo profile in ideally
executed tempo change, in an effort to attach a quantitative meaning to
the idea “natural sounding.” We are concerned in particular with the
similarity between actual expert performance of ritards and hypothetical
abstract ideal forms that we will derive from a formalization of musical
flow. Our presumption is that the consummate aesthetic proportion
achieved in the expert samples reflects a match with some kind of ideal
mental model of a ritard that the performers share, at an unconscious level,
with listeners.

In order that we may consider the shape of a hypothetical tempo curve,
we must assume that the discrete beat durations produced by the musician
were generated by sampling (at discrete intervals along the time axis,
namely the indicated attack points of the beats) of some mostly continuous
function of time representing the musical tempo. Normal constant-tempo
music then naturally corresponds to a constant function (whose value is
the tempo) while new tempos correspond to step discontinuities. But what
shape does this curve take when the tempo changes gradually, as in a
ritardando or accelerando?

Sundberg and Verrillo (1980), analyzing very brief passages of ritards,
concluded that the shape of their tempo profile is linear. This model seems
surprising, however, because then a ritard could never join smoothly with
adjacent tempos, as might be aesthetically desirable; the onset of a ritard
would always produce a discontinuity in the first derivative of the tempo
profile, which might be heard as a “jerk.” A belief sometimes expressed
by musicians is that the shape of the ritard curves is exponential, perhaps
as this model brings to mind a natural growth process; however, here again
a smooth join at both ends is impossible. Whether a smooth join is de-
sirable in a particular musical context depends, of course, on the aesthetic
judgment of the performer—although the composer’s marking poco a
poco (“little by little”) that frequently accompanies ritards and accele-
randos seems to call for a smooth join nearly explicitly (at least at the front
end). Our concern, rather, is with characterizing the formal planning
apparatus that must be available to the performer in order that a smooth
join may be achieved if the music seems to call for it.

To obtain a smooth initiation of a tempo change (i.e., the derivative
is continuous at the join with a constant previous tempo), a polynomial
of at least degree two is required; to obtain smooth joins with both ad-
joining tempos (so that the tempo profile’s derivative is continuous at both
the beginning and the end of the tempo change), a polynomial of degree
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Force Dynamics of Tempo Change in Music 187

three is required.! Cubic polynomials play a critical role in the theory of
motor control; they minimize the “jerk” or “jumpiness” of limb move-
ments (see for example Atkeson, An, & Hollerbach, 1988; Flash &
Hogan, 1985; Richards, 1988). In much the same way, musical ritards
executed to the profile of a cubic spline would satisfy a natural constraint
of smooth, graceful gesture with the minimal formal apparatus. It may
be that ritards longer than Sundberg and Verrillo examined (i.e., yielding
more data) are required in order to reveal such higher-order trends. Hence
in this paper we examine five much longer musical samples, long enough
to detect a cubic component in the tempo profile if one is present.

The Force Model

In this section, we translate into mathematical terms an intuition, com-
mon among performing musicians, that changing the tempo of the musical
beat involves something like the application of a force to the beat, as
evidenced by such figures of speech as “pushing forward,” for an acce-
lerando, and “holding back,” for a ritard. This notion is consistent with
the commonplace conception of musical progression through time as a sort
of movement, one that proceeds at a constant pace unless it is impelled
to do otherwise by the performer.

The progression of music through time can be conceived of as the
movement along the time axis of a (purely abstract) “particle of music,”
whose position at time # is given by monotonically nondecreasing P = P(z).
The derivative of the particle’s position with respect to time, H(t) =P(1),
is a function representing the tempo of the music at time ¢, whose inverse
is the duration of a beat starting at time ¢. P(¢) may also be conceived of
purely “formally” as [H(t)dt, under the constraint H(t)=0 for all . The
reader may find this latter construction somewhat more intuitive than the
position of the particle at time #, to which it is difficult to attach any
physical interpretation (but see footnote 2). The particle has some “mass”
m, which may be thought of naturally as the resistance of the music to
change in tempo (depending, we might imagine, on musical factors such
as the emotional “heaviness” of the passage, or on performance param-
eters such as the ease of maintaining ensemble); or else, again, as a purely
formal parameter. Throughout the following analysis, it should be kept

1. The degree comes from four boundary conditions: the initial and final tempos, and
the initial and final rates of change, both zero. These four conditions then suffice to solve
for the four constants that define the cubic polynomial. A polynomial used to meet bound-
ary conditions in this fashion is commonly called a “spline.”
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188 Jacob Feldman, David Epstein, & Whitman Richards

in mind that the “forces” we are discussing are not physical but rather
mental components of some plan of action residing in the mind of the
musical performer.2

Following a conjugate of Newton’s second law F = ma, the particle
responds to a time-varying force F(t), according to

F(t) = mP(1). (1)

This domain actually makes a purer instantiation of Newtonian theory
than do physical objects, in a sense, because of the total absence of “fric-
tion.” In the next section, we measure beat durations of actual musical
passages, so the governing equation is better expressed as

Hi) =Pl = Pleg) + 3 [ Flne, 2

to

where P(t,) is the initial tempo at time #, before the initiation of the force.3
Because we are interested in only the local shape of the tempo change event
itself, we restrict our attention to the unit interval [0,1] and assume with-
out loss of generality that the initial tempoP(t,) = 0, and m = 1 and hence
drops out. In this case Eq. (2) simplifies to

Hit) = f Flo)d, 3)

that is, a simple integral relationship between the force profile and the
tempo profile, so that the tempo event is simply the formal integration of
the force event. This relationship enforces a difference of one in poly-
nomial degree between any force event and the corresponding tempo
event. A null (everywhere zero) force event yields a constant tempo event,
constant force yields linear tempo, linear force yields quadratic tempo, and
so forth. Enumeration of these simple force event types leads to a very
short list of basic tempo profiles, in a manner quite similar to the enu-

2. Interestingly, at least one physical system (nearly) instantiates this theory literally,
rather than just “mentally,” as the musical performer putatively does: the mechanism of
a music box. This device typically consists of a cylinder with raised bumps, which rotates
on its axis, causing the bumps to pluck metal spokes, which produce tones. Assume the
music is encoded on the cylinder perfectly “‘straight” (i.e., without any tempo inflection),
and the cylinder turns without any friction (which of course it cannot really). Then the
force equation governing the rotation of the cylinder, N(¢) = I6(¢) (relating torque, mo-
ment of inertia, and angular acceleration), is subject to the same treatment of angular
velocity change as is linear velocity in the present theory, and the resulting music would
consequently be subject to the identical categorization of tempo change events.

3. Note that the sign (+/—) here is unimportant; for each type of ritard there is a
corresponding accelerando. For simplicity we will henceforth assume an increasing tempo
profile, corresponding to a ritard if the ordinate is interpreted as beat duration. Note also
the minor linguistic confusion, since the term “increase” really means an increase in beat
duration, and hence a decrease in “tempo” as normally expressed.
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Force Dynamics of Tempo Change in Music 189

meration of visual cues to categories of object motion constructed by
Rubin and Richards (1985).
The most rudimentary tempo “‘event,” normal constant-tempo music,

thus corresponds straightforwardly to the null (everywhere zero) force,
which integrates (via Eq. 3) to a constant profile. Similarly, instantaneous
tempo changes can be produced by the instantaneous application of in-
finite force, the so-called “impulse” function, 8(¢) = at ¢t =0, §(z) =0
elsewhere. This function definitionally has the property

}S(t)dt =1

(see Bracewell, 1965). Consequently, if the desired amount of tempo
change is G, the force function F(t) = G(¢) yields an instantaneous step
change in the tempo function H(t), analogous to a hockey stick striking
the puck in a “slap shot.” The instantaneous tempo event is thus

Hi={& 1 S o} )
An impulse force event produces a start or stop of the music (when the
prior tempo or the new tempo is zero) or a discrete tempo change (oth-
erwise), as would be stipulated by a new tempo marking in the score.
The need for tempo continuity, in particular with an adjacent region
of constant tempo as mentioned earlier, is met by two qualitative types of
nonlinear tempo change: one for continuity at only one end and one for
continuity at both initiation and termination.*

LINEAR FORCE, QUADRATIC TEMPO

Because the force event is the derivative of the tempo event, smoothness
in the tempo corresponds to continuity in the force. To obtain a tempo
change that begins smoothly, therefore, at least a linear force event, en-
tailing a quadratic tempo profile, is required. If the tempo change is to
be applied to normal constant-tempo music, this linear force must start
at zero. Hence the simplest case of tempo change is a simple linear increase
from zero to some nonzero endpoint representing the final rate of tempo
change, hence F(t) = at, where a is the rate at which the force is increased
(i.e., the slope of the line). The corresponding tempo event is thus a

4. Needless to say, these two types do not exhaust the field of possible qualitative types
of tempo change. A variety of other types, including pauses (e.g., luftpause, breath), and
rubato, can be accounted for neatly by the force model as special cases. We omit details
because the musical samples considered in this paper, long passages of ritardando and
accelerando, do not include examples of these types for empirical corroboration. These
two types, at any rate, are not normally sustained over sufficiently long runs of notes to
have their qualitative structure investigated sensitively (statistically) in vivo.
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190 Jacob Feldman, David Epstein, & Whitman Richards

e

Force Tempo

Fig. 1. A linear force (left) produces (integrates to yield) a quadratic tempo profile (right).

parabolic increase in tempo, joining the adjacent region of constant tempo
smoothly, but then increasing rapidly at the other end. In formal terms,

H(t) = f Fl)dt = f ardt = §1°. )

This force and tempo event is drawn schematically in Figure 1.

QUADRATIC FORCE, CUBIC TEMPO

If the linear force event discussed earlier is translated down the y-axis
until half of it is above and half of it below zero (i.e., down a distance
a/2), we obtain a linear function that rises from below the axis on the left
to above the axis on the right. When this function is inverted and then
integrated, it yields a force function that, when integrated in turn, yields
a tempo function that is flat at both ends (see Figure 2). As discussed
earlier, such a tempo profile could join smoothly with both prior and
succeeding regions of constant tempo, making a ritard (or accelerando)
that begins and ends without any “jerk” in the musical gesture. We men-
tion the linear precursor to the force function in this case both to illustrate
its relationship to the linear force function of the previous section, and
also because in the next section we will observe this precursor in the
derivatives of the musical samples. In formal terms,

A = [ar—1ar = [$2-%, ©)

and

H(t) = f Fl)dt = f [§+°-§ddr = [§~F]. )

Note that in both of the above integrations, our exclusive interest in the
shape of the tempo profile and not its height (i.e., not the absolute tempo)
allows us to ignore the constant of integration.
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Force Dynamics of Tempo Change in Music 191

-\ I A —= 7

Force Tempo

Fig. 2. A linear shape with equal parts above and below zero (left) integrates to yield a
symmetric parabolic force (middle), which in turn integrates to yield a smoothly increasing
tempo profile (right). The tempo event, like a cubic spline, is flat at both ends, and hence
joins smoothly with both adjoining regions of constant tempo. (The precursor shape on
the left, while neither a force nor a tempo, is to be compared with the derivatives of the
observed data discussed in the text.)

Analysis of the Tempo Profiles in Five Musical Samples

SAMPLES

In a forthcoming book (Epstein, in press) David Epstein considers four
passages: ritardandos from Dvofdk and Stravinsky and accelerandos from
De Falla and Tchaikovsky. The passages were selected for their unusual
length, so that the time curve might be examined over as large a sample
as possible, in order to permit the statistical detection of higher-order
trends. For each passage, Epstein auditioned a number of performances,
culled from commercially available recordings, including some of the
world’s most widely respected conductors. Each one of the auditioned
performances already represents a highly special sample, since it presum-
ably represents the conductor’s first choice from a number of recorded
“takes.” From these recordings, for ‘each piece, Epstein selected the one
he judged to capture the optimally natural, musical execution of the pas-
sage. These data may thus epitomize, as closely as possible, “ideal” natural
tempo change.’

Additionally, in an earlier paper Epstein (1985) examined a roughly
35-min sample of the barter chant (“Himou”) of the Yanomami Indians
of Venezuela, a rhythmic ritual conversation whose tempo fluctuated,
mostly accelerating, until a bargain agreement was reached. This sample,
in addition to yielding a much larger data set on which to test the theory,
provides a modicum of cross-cultural corroboration.

5. These data thus represent an attempt to examine idealized, rather than average,
performance. To characterize typical tempo change (as executed by, say, randomly selected
trained musicians) would be quite interesting, but it would be a different study.
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3 - Cubic:

y = - 4.7145 + 0.90960x -
5.0319e-2x"2 + 9.1773e-4x"3
R"2 =0.944

¢ ~~ Quadratic:
y = 2.7478 - 0.25519x + 7.4985e-3x*2
R*2 = 0.864

Linear:
y = - 0.33406 + 5.9747e-2x
R*2 = 0.629

Beat duration (seconds)

0 T T T T 1
10 20 30 40

Beat number

Fig. 3. Sample 1 (Dvofdk, Slavonic Dance op. 46 no. 8, mm. 243-272, conducted by
George Szell. Columbia/Odyssey Stereo Cassette YT 34626), showing linear, quadratic,
and cubic best fit regressions plotted, with equations and degrees of fit (R?) indicated.

The beat durations in the samples were measured and recorded, using
the (rapidly played) measure as the beat in all but the very slow Stravinsky
passage, in which each quarter-note beat was a measured unit. The beats
were measured by first transferring the recordings to 7.5 in./sec open-reel
tape. The attack points were then marked on the tape using a conventional
editing technique, in which the tape is run back and forth over the playback
head by hand at very slow speed until the attack point can be identified
exactly. The distances between the marked points were measured to the
nearest millimeter, resulting in a final resolution of about § msec. The time
courses of the five samples are displayed graphically in Figures 3—7.

To test the fit of the polynomial models to the data, regressions to linear,
quadratic, and cubic polynomials were performed. The regression curves
are plotted (and the equations are indicated) in the graphs in Figures 3-7.
Ideally, one would like to determine the true polynomial degree of each
curve by testing the significance of the incremental contribution to the
variance accounted for by the addition of successive higher-order terms.
Unfortunately, however, the very large proportion of variance accounted
for by these regressions, especially of the quadratic and cubic models,
usually well over 90%, makes the use of significance testing problematic.
The error term in such an analysis is the variance still unaccounted for
with the added polynomial term, which here comes so close to zero that
F-values are inflated, with the result that successive higher-order regres-
sions almost always come out spuriously significant.
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Cubic:
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3 1.0
13
<
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3
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0.5 T — ~
10 20 30
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Fig. 4. Sample 2 (Stravinsky, excerpt from The Firebird (complete ballet), rehearsal number
19, mm. 12—17, conducted by the composer. Columbia Records Stereo MS 6328) showing
linear, quadratic, and cubic best.fit regressions plotted, with equations and degrees of fit
(R?) indicated.

2.0 1
1.8
Z 16
£ .
e
H 1..
< 44 Linear:
£ ] y=21269 - 5.2629-2x
£ 1 rR2=0932
5 124 Cubic:
A ] y =2.3560 - 6.0313e-2x - 1.7372e-3x2 + 6.6814¢-5xA3
3 ] RA2=0975
= 101
J
0.8 _ L] Quadratic:
] & y=26507 - 0.11998x + 1.8708¢-3x"2
L RA2=0974
0.6 T M ~T 1
0 10 20 30

Beat number

Fig. 5. Sample 3 (De Falla, excerpt from The Three-Cornered Hat (suite II), The Miller’s
Dance, rehearsal number 9, conducted by Herrera de la Fuente. Vox Cum Laude Record
9047), showing linear, quadratic, and cubic best fit regressions plotted, with equations and
degrees of fit (R?) indicated.
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Fig. 6. Sample 4 (Tchaikovsky, excerpt from Symphony no. 4, first movement, mm. 144—
161, conducted by Herbert von Karajan. Deutsche Gramophon Digital 415 348—4), show-
ing linear, quadratic, and cubic best fit regressions plotted, with equations and degrees
of fit (R2) indicated.

The R? values are presented in Table 1. In every case but Sample 3
(discussed later), the proportion of variance accounted for by the linear
model is substantially lower than that accounted for by the quadratic or
cubic model. To the eye, more importantly, the observed profiles do not
appear to be linear: in each case (again with the possible exception of
Sample 3) there is a strong curved component, which in most cases flattens
out at one or both ends so that its tangent joins smoothly with that of
the adjacent region of constant tempo. The locations at which the profiles
flattened out were generally in accord with the composers’ marked tempo
directions; the shapes will be discussed one by one next.

The exponential model also performed poorly. In four of the five sam-
ples, the exponential model was slightly better than the linear one, but
worse than either the quadratic or cubic model; in the other case the
exponential model was even worse than the linear model. In all cases, the
best fit exponential appeared to be primarily linear anyway, indicating that
the curvature present in the data was not exponential in nature (that is,
the exponential curve fit the data only to the extent that it matched the
linear best fit).
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0.0 T 1
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Beat number

Fig. 7. Sample 5 (Himou bargain chant of the Yanomami Indians. See Epstein, 1985),
showing linear, quadratic, and cubic best fit regressions plotted, with equations and degrees
of fit (R2) indicated.

In order to determine more precisely the true degree of each of these
observed profiles, we numerically estimated derivatives (with respect to
time) of the observed data and compared them with the derivative shapes
predicted by the force model. Because the force model makes a prediction
not only about the shape of the final tempo profile but also of its
derivative—the force profile—and, similarly, any lower order derivatives,
it is possible to “unpeel” the observed data, polynomial degree by poly-
nomial degree, by taking successive derivatives, to see what kind of a curve
it really is. Differentiation was performed by first smoothing the data with
a discrete smoothing operator (of width 5 for the first four examples, and
width 50 for the much longer fifth example). Then, each successive de-

TABLE 1
R? for Best Fit Linear, Quadratic, and Cubic Polynomials

Sample Linear Quadratic Cubic Exponential
1 629 .864 944 .787
2 .699 917 974 .765
3 932 974 975 .960
4 .821 .894 946 .818
S 526 .897 943 532
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196 Jacob Feldman, David Epstein, & Whitman Richards

rivative was taken by a discrete forward difference operator (of width 2
for the first four samples, and 10 for the fifth sample; all mask widths were
chosen by eye to produce cleanest output). Derivatives down to (but not
including) the first apparently zero output are shown in Figures 8-12,
shown lined up with the raw beat durations. In each case, either the third
or fourth derivative was apparently zero, at least over a large central
portion of the sample, indicating polynomials of degree 2 or 3 in each case.
Theoretically, the derivative before the first zero would be a constant, and
hence nonzero, but in practice in each case the value of the constants was
below the noise floor and hence apparently zero, so actually the last
displayed derivative in each case is the presumably linear one.

We now proceed to examine the five samples one by one, considering
both the general similarity of the linear, quadratic, and cubic best fit curves
(Figures 3—7) to the shapes predicted by the force model, and also the
similarity of its derivatives (Figures 8—12, in which the raw data are
reproduced for side-by-side comparison) to the appropriate predicted
force profiles.

SAMPLE I (DVORAK)

Examining Figure 3, this ritard is clearly parabolic, possibly with a cubic
component. Its first derivative (Figure 8b) appears to be parabolic and its
second (Figure 8c) linear (except for two presumably spurious points at
the end), suggesting that the cubic component in the tempo profile is
actually important. In either case, the tangent of the curve flattens out near
the beginning of the ritard, indicating a smooth join with the previously
prevailing tempo, and thereafter rises in a nonlinear manner. There is no
smooth join at the end of the passage, presumably because at this point
the composer indicates a sudden discontinuous jump back to the original
tempo.

SAMPLE 2 (STRAVINSKY)

This ritard (Figure 4) is nearly identical in shape to the previous sample.
Again, the shape of the plotted regressions reveals a parabola, and the
derivatives (Figure 9) suggest that the cubic component may be important.
Again, the tangent of the curve flattens out near the beginning, indicating
a smooth join with the previous section of music. At the other end, Stravin-
sky marks a new tempo (which is initially so slow that there is no longer
any apparent beat or forward momentum), so that as in Sample 1 there
is no occasion for a smooth join to a new tempo.
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Fig. 8. Sample 1 (Dvofdk), showing (a) original beat durations with best cubic fit plotted
for comparison, and adjoining tempos and composer’s markings indicated; (b) first de-
rivative; (c) second derivative.

SAMPLE 3 (DE FALLA)

This passage, an accelerando, is somewhat problematic. The plot (Fig-
ure 5) suggests a nonlinear curve of possibly higher order, as the points
wander in an extremely orderly manner above and below the linear
regression line. This complexity is in part due to the two small step
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poco & poco allirgando [New tempo)
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Fig. 9. Sample 2 (Stravinsky), showing (a) original beat durations with best cubic fit plotted
for comparison, and adjoining tempos and composer’s markings indicated; (b) first de-
rivative; (c) second derivative.

discontinuities (marked “more lively”’) that the composer has indicated at
even intervals in the middle of the passage. The first derivative (Figure 10b)
on the other hand, manifests the characteristic central hump of the de-
rivative of the cubic spline (Figure 2), except for the last few points.
Correspondingly, the second derivative rises linearly from below the axis
to above, at any rate over part of its range, as expected. The musical
context of this passage is unique among our samples in that at the end
of the accelerando the piece comes to a full stop. There is thus no later
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Pochissimo piu mosso, [End of piece]
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Fig. 10. Sample 3 (De Falla), showing (a) original beat durations with best cubic fit plotted
for comparison, and adjoining tempos and composer’s markings indicated; (b) first de-
rivative; (c) second derivative.
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poco a poco stringendo al... [Tempo I}
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Fig. 11. Sample 4 (Tchaikovsky), showing (a) original beat durations with best cubic fit
plotted for comparison, and adjoining tempos and composer’s markings indicted; (b) first
derivative.

section of constant tempo to which this passage needs to join; rather, the
conductor’s goal tempo here seems to be an integral multiple (3:1) of the
initially prevailing tempo.¢

6. Integral tempo ratios are apparently a ubiquitous and important phenomenon, and
they are considered more fully in both Epstein (1979) and Epstein (in press).
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Fig. 12. Sample 5 (Himou), showing (a) original beat durations with best cubic fit plotted
for comparison, and adjoining tempos and composer’s markings indicated; (b) first de-
rivative.

SAMPLE 4 (TCHAIKOVSKY)

This accelerando (Figure 6) is the only sample that unambiguously
seems to require the smooth spline, in that there is ongoing music in both
adjacent regions, with the same basic pulse unit but at different tempos.
Exactly as expected, then, its profile has a conspicuous curvature com-
ponent that flattens out near both ends. The first derivative (Figure 11b)
is clearly linear, confirming the nonlinearity in the tempo profile, but
casting some doubt on the cubic component. In either case, though, the
profile is not linear.

SAMPLE § (HIMOU)

This sample (Figure 7) is clearly parabolic, starting with a steep negative
tangent and flattening out at the end. The almost perfectly linear first
derivative (Figure 12a) corroborates this model. The similarity of the
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derivative with the previous sample is striking. It is intriguing that in two
such sharply contrasting musical and cultural traditions as European mu-
sic and Yanomami chant protocols, a nearly identical form was produced.

All five samples, in summary, exhibit a primarily nonlinear shape. The
problematic Falla (Sample 3), while not fitting any simple low-order type,
clearly curves above and below the best fit straight line in an orderly
although more complex manner, visibly following the composer’s more
complex markings. The other four examples and their derivatives all have
shapes that are consistent with simple low-order force events, where the
force is either linear or a simple quadratic form, and the resulting tempo
is either parabolic or spline-shaped. The force model thus accounts neatly
for the observed tempo profiles.

Conclusion

Musical tempo might, in principle, be changed by any arbitrary con-
tinuous function with different starting and ending values. The performer
is not obligated to follow constraints such as those suggested in this paper:
no physical laws, for example, require it. Yet while change of tempo by
skilled musicians may seem to be under conscious, voluntary control, the
matches found here between observed profiles and theoretical ideal shapes
suggest that performers actually conform in detail to mathematical con-
straints of which they presumably have no conscious knowledge. If this
conformance actually were responsible for the aesthetically satisfying form
achieved by skilled musicians, as we speculate, it suggests a paradigm for
“beauty,” or at least naturalness of form, that is refreshingly concrete.
Furthermore, as we have discussed, because these ideal shapes were de-
rived from the force model, this conformance seems to reflect an under-
lying, unconscious conception of music as a quasi-physical thing that
“moves forward” as it unfolds through time, now speeding up and now
slowing down, in accord with the moment-to-moment flux in its rhythmic,
harmonic, and affective character—a conception reflected in musicians’
common use of terms such as “movement,” “motion,” and “flow” to
characterize the progression of music. We propose, in effect, that the
relationship between tempo change (designated by the score and manip-
ulated by the performer) and real physical movement (controlled by phys-
ical forces) is somewhat more than just a metaphor: the formal machinery
is largely the same. The “forces” we invoke are neither actual physical
forces, of course, nor are they literally due to physical constraints such
as those that control the movement of a conductor’s baton or a drummer’s
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stick. That these mental analogs of force actually obey constraints as if
they were physical is thus all the more remarkable.”
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