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 Music Perception © 1992 by the regents of the
 Winter 1992, Vol. 10, No. 2, 185-204 university of California

 Force Dynamics of Tempo Change in Music

 JACOB FELDMAN, DAVID EPSTEIN, & WHITMAN RICHARDS
 Massachusetts Institute of Technology

 This paper reports a study of the quantitative shape of ideally executed
 tempo decrease and increase (ritardando and accelerando) in music. Five
 expertly performed samples of real music (two ritards and two acce-
 lerandos from European classical music, and one sample of Venezuelan
 [Yanomami] Indian barter chant) are analyzed, and each is found to be
 a polynomial of degree at least two, and in some cases probably three-
 not simply linear as had been previously reported, or exponential, as
 is sometimes suspected. We formally develop a simple force model of
 musical "motion," in which the progression of music over time is con-
 ceived of as being controlled by a mental analog of a mechanical force.
 Each of the five observed tempo profiles is shown to be well accounted
 for as the result of one of just two types of force event: (1) a linear force,
 which produces a quadratic ritardando (or accelerando), and (2) a par-
 abolic force, which produces a spline-shaped cubic tempo profile, a
 ritardando that joins smoothly at both ends to adjoining regions of
 constant tempo.

 Introduction: Tempo Change in Music

 Change of tempo in music is diagnostic of the interplay between mental
 processes (cognitive, affective, and so forth) and formal musical structures,
 since control over the exact pacing and mathematical pattern of a tempo
 change is not normally notated explicitly in the score, but rather is ceded
 completely to the intuitive judgment- the "ear"- of the performing mu-
 sician. The slowing of the beat in a ritardando or the speeding up in an
 accelerando, for example, signal purely mental phenomena. Moreover, the
 control of musical timing must rest at a somewhat more abstract level than
 that of an ordinary motor schema, such as the one that controls the swing
 of a tennis racket. A long ritard, for instance, might require a very large
 number of independent constituent motions to execute; a subset of these
 contribute control to the timing of the ritard (i.e., those that produce a
 note), but many others do not (e.g., bow recovery in stringed instruments).
 Yet the skilled musician can keep track of the overall pacing of the

 Requests for reprints may be sent to Jacob Feldman, who is now at the Rutgers Uni-
 versity Center for Cognitive Science (Bldg. 3870, Rm. 108), Busch Campus, Rutgers Uni-
 versity, Piscataway, NJ 08855.
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 186 Jacob Feldman, David Epstein, & Whitman Richards

 ongoing music largely independently of the pacing of most of these in-
 dividual motions, determining whether it is conforming correctly to his
 or her abstract mental model of a "natural-sounding" or "musical-
 sounding" ritard.

 We investigate the mathematical shape of the tempo profile in ideally
 executed tempo change, in an effort to attach a quantitative meaning to
 the idea "natural sounding." We are concerned in particular with the
 similarity between actual expert performance of ritards and hypothetical
 abstract ideal forms that we will derive from a formalization of musical

 flow. Our presumption is that the consummate aesthetic proportion
 achieved in the expert samples reflects a match with some kind of ideal
 mental model of a ritard that the performers share, at an unconscious level,
 with listeners.

 In order that we may consider the shape of a hypothetical tempo curve,
 we must assume that the discrete beat durations produced by the musician
 were generated by sampling (at discrete intervals along the time axis,
 namely the indicated attack points of the beats) of some mostly continuous
 function of time representing the musical tempo. Normal constant-tempo
 music then naturally corresponds to a constant function (whose value is
 the tempo) while new tempos correspond to step discontinuities. But what
 shape does this curve take when the tempo changes gradually, as in a
 ritardando or accelerando?

 Sundberg and Verrillo (1980), analyzing very brief passages of ritards,
 concluded that the shape of their tempo profile is linear. This model seems
 surprising, however, because then a ritard could never join smoothly with
 adjacent tempos, as might be aesthetically desirable; the onset of a ritard
 would always produce a discontinuity in the first derivative of the tempo
 profile, which might be heard as a "jerk." A belief sometimes expressed
 by musicians is that the shape of the ritard curves is exponential, perhaps
 as this model brings to mind a natural growth process; however, here again
 a smooth join at both ends is impossible. Whether a smooth join is de-
 sirable in a particular musical context depends, of course, on the aesthetic
 judgment of the performer- although the composer's marking poco a
 poco ("little by little") that frequently accompanies ritards and accele-
 randos seems to call for a smooth join nearly explicitly (at least at the front
 end). Our concern, rather, is with characterizing the formal planning
 apparatus that must be available to the performer in order that a smooth
 join may be achieved if the music seems to call for it.

 To obtain a smooth initiation of a tempo change (i.e., the derivative
 is continuous at the join with a constant previous tempo), a polynomial
 of at least degree two is required; to obtain smooth joins with both ad-
 joining tempos (so that the tempo profile's derivative is continuous at both
 the beginning and the end of the tempo change), a polynomial of degree
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 Force Dynamics of Tempo Change in Music 187

 three is required.1 Cubic polynomials play a critical role in the theory of
 motor control; they minimize the "jerk" or "jumpiness" of limb move-
 ments (see for example Atkeson, An, &c Hollerbach, 1988; Flash &c
 Hogan, 1985; Richards, 1988). In much the same way, musical ritards
 executed to the profile of a cubic spline would satisfy a natural constraint
 of smooth, graceful gesture with the minimal formal apparatus. It may
 be that ritards longer than Sundberg and Verrillo examined (i.e., yielding
 more data) are required in order to reveal such higher-order trends. Hence
 in this paper we examine five much longer musical samples, long enough
 to detect a cubic component in the tempo profile if one is present.

 The Force Model

 In this section, we translate into mathematical terms an intuition, com-
 mon among performing musicians, that changing the tempo of the musical
 beat involves something like the application of a force to the beat, as
 evidenced by such figures of speech as "pushing forward," for an acce-
 lerando, and "holding back," for a ritard. This notion is consistent with
 the commonplace conception of musical progression through time as a sort
 of movement, one that proceeds at a constant pace unless it is impelled
 to do otherwise by the performer.

 The progression of music through time can be conceived of as the
 movement along the time axis of a (purely abstract) "particle of music,"
 whose position at time t is given by monotonically nondecreasing P = P(t).
 The derivative of the particle's position with respect to time, H(t) =P(t),
 is a function representing the tempo of the music at time t, whose inverse
 is the duration of a beat starting at time t. P(t) may also be conceived of
 purely "formally" as fH(t)dt, under the constraint H(t)>0 for all t. The
 reader may find this latter construction somewhat more intuitive than the
 position of the particle at time t, to which it is difficult to attach any
 physical interpretation (but see footnote 2). The particle has some "mass"
 m, which may be thought of naturally as the resistance of the music to
 change in tempo (depending, we might imagine, on musical factors such
 as the emotional "heaviness" of the passage, or on performance param-
 eters such as the ease of maintaining ensemble); or else, again, as a purely
 formal parameter. Throughout the following analysis, it should be kept

 1. The degree comes from four boundary conditions: the initial and final tempos, and
 the initial and final rates of change, both zero. These four conditions then suffice to solve
 for the four constants that define the cubic polynomial. A polynomial used to meet bound-
 ary conditions in this fashion is commonly called a "spline."
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 188 Jacob Feldman, David Epstein, &c Whitman Richards

 in mind that the "forces" we are discussing are not physical but rather
 mental components of some plan of action residing in the mind of the
 musical performer.2

 Following a conjugate of Newton's second law F = ma, the particle
 responds to a time-varying force F(t), according to

 F(t) = mP(t). (1)

 This domain actually makes a purer instantiation of Newtonian theory
 than do physical objects, in a sense, because of the total absence of "fric-
 tion." In the next section, we measure beat durations of actual musical
 passages, so the governing equation is better expressed as

 t

 H(t) =P(t) =P{t0) + ^F{t)dt, (2)
 h)

 where P(t0) is the initial tempo at time t0 before the initiation of the force.3
 Because we are interested in only the local shape of the tempo change event
 itself, we restrict our attention to the unit interval [0,1] and assume with-
 out loss of generality that the initial tempoP(t0) = 0, and m = 1 and hence
 drops out. In this case Eq. (2) simplifies to

 Hit) = JF(t)dt, (3)
 that is, a simple integral relationship between the force profile and the
 tempo profile, so that the tempo event is simply the formal integration of
 the force event. This relationship enforces a difference of one in poly-
 nomial degree between any force event and the corresponding tempo
 event. A null (everywhere zero) force event yields a constant tempo event,
 constant force yields linear tempo, linear force yields quadratic tempo, and
 so forth. Enumeration of these simple force event types leads to a very
 short list of basic tempo profiles, in a manner quite similar to the enu-

 2. Interestingly, at least one physical system (nearly) instantiates this theory literally,
 rather than just "mentally," as the musical performer putatively does: the mechanism of
 a music box. This device typically consists of a cylinder with raised bumps, which rotates
 on its axis, causing the bumps to pluck metal spokes, which produce tones. Assume the
 music is encoded on the cylinder perfectly "straight" (i.e., without any tempo inflection),
 and the cylinder turns without any friction (which of course it cannot really). Then the
 force equation governing the rotation of the cylinder, N(t) = 70 (t) (relating torque, mo-
 ment of inertia, and angular acceleration), is subject to the same treatment of angular
 velocity change as is linear velocity in the present theory, and the resulting music would
 consequently be subject to the identical categorization of tempo change events.

 3. Note that the sign (+/- ) here is unimportant; for each type of ritard there is a
 corresponding accelerando. For simplicity we will henceforth assume an increasing tempo
 profile, corresponding to a ritard if the ordinate is interpreted as beat duration. Note also
 the minor linguistic confusion, since the term "increase" really means an increase in beat
 duration, and hence a decrease in "tempo" as normally expressed.
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 Force Dynamics of Tempo Change in Music 189

 meration of visual cues to categories of object motion constructed by
 Rubin and Richards (1985).

 The most rudimentary tempo "event," normal constant-tempo music,
 thus corresponds straightforwardly to the null (everywhere zero) force,
 which integrates (via Eq. 3) to a constant profile. Similarly, instantaneous
 tempo changes can be produced by the instantaneous application of in-
 finite force, the so-called "impulse" function, b(t) = o° at t = 0, b(t) = 0
 elsewhere. This function definitionally has the property

 00

 jb(t)dt = 1
 - 00

 (see Bracewell, 1965). Consequently, if the desired amount of tempo
 change is G, the force function F(t) = Gà(t) yields an instantaneous step
 change in the tempo function H(t), analogous to a hockey stick striking
 the puck in a "slap shot." The instantaneous tempo event is thus

 *W-{S: ',*?}• (O
 An impulse force event produces a start or stop of the music (when the
 prior tempo or the new tempo is zero) or a discrete tempo change (oth-
 erwise), as would be stipulated by a new tempo marking in the score.

 The need for tempo continuity, in particular with an adjacent region
 of constant tempo as mentioned earlier, is met by two qualitative types of
 nonlinear tempo change: one for continuity at only one end and one for
 continuity at both initiation and termination.4

 LINEAR FORCE, QUADRATIC TEMPO

 Because the force event is the derivative of the tempo event, smoothness
 in the tempo corresponds to continuity in the force. To obtain a tempo
 change that begins smoothly, therefore, at least a linear force event, en-
 tailing a quadratic tempo profile, is required. If the tempo change is to
 be applied to normal constant-tempo music, this linear force must start
 at zero. Hence the simplest case of tempo change is a simple linear increase
 from zero to some nonzero endpoint representing the final rate of tempo
 change, hence F(t) = at, where a is the rate at which the force is increased
 (i.e., the slope of the line). The corresponding tempo event is thus a

 4. Needless to say, these two types do not exhaust the field of possible qualitative types
 of tempo change. A variety of other types, including pauses (e.g., luftpause, breath), and
 rubato, can be accounted for neatly by the force model as special cases. We omit details
 because the musical samples considered in this paper, long passages of ritardando and
 accelerando, do not include examples of these types for empirical corroboration. These
 two types, at any rate, are not normally sustained over sufficiently long runs of notes to
 have their qualitative structure investigated sensitively (statistically) in vivo.

This content downloaded from 
�������������128.32.10.230 on Thu, 06 Oct 2022 22:47:28 UTC������������� 

All use subject to https://about.jstor.org/terms



 190 Jacob Feldman, David Epstein, ôt Whitman Richards

 Fig. 1. A linear force (left) produces (integrates to yield) a quadratic tempo profile (right).

 parabolic increase in tempo, joining the adjacent region of constant tempo
 smoothly, but then increasing rapidly at the other end. In formal terms,

 H(t) = JF(t)dt = Jatdt = f t2. (5)
 This force and tempo event is drawn schematically in Figure 1.

 QUADRATIC FORCE, CUBIC TEMPO

 If the linear force event discussed earlier is translated down the y-axis
 until half of it is above and half of it below zero (i.e., down a distance
 a/2), we obtain a linear function that rises from below the axis on the left
 to above the axis on the right. When this function is inverted and then
 integrated, it yields a force function that, when integrated in turn, yields
 a tempo function that is flat at both ends (see Figure 2). As discussed
 earlier, such a tempo profile could join smoothly with both prior and
 succeeding regions of constant tempo, making a ritard (or accelerando)
 that begins and ends without any "jerk" in the musical gesture. We men-
 tion the linear precursor to the force function in this case both to illustrate
 its relationship to the linear force function of the previous section, and
 also because in the next section we will observe this precursor in the
 derivatives of the musical samples. In formal terms,

 F(t) = j[at-^]dt = [Jf2-Çf], (6)
 and

 H(t) = JF(t)dt = f[% t2-^i\dt = [%?-%t2l (7)

 Note that in both of the above integrations, our exclusive interest in the
 shape of the tempo profile and not its height (i.e. , not the absolute tempo)
 allows us to ignore the constant of integration.
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 Force Dynamics of Tempo Change in Music 191

 Fig. 2. A linear shape with equal parts above and below zero (left) integrates to yield a
 symmetric parabolic force (middle), which in turn integrates to yield a smoothly increasing
 tempo profile (right). The tempo event, like a cubic spline, is flat at both ends, and hence
 joins smoothly with both adjoining regions of constant tempo. (The precursor shape on
 the left, while neither a force nor a tempo, is to be compared with the derivatives of the
 observed data discussed in the text.)

 Analysis of the Tempo Profiles in Five Musical Samples

 SAMPLES

 In a forthcoming book (Epstein, in press) David Epstein considers four
 passages: ritardandos from Dvorak and Stravinsky and accelerandos from
 De Falla and Tchaikovsky. The passages were selected for their unusual
 length, so that the time curve might be examined over as large a sample
 as possible, in order to permit the statistical detection of higher-order
 trends. For each passage, Epstein auditioned a number of performances,
 culled from commercially available recordings, including some of the
 world's most widely respected conductors. Each one of the auditioned
 performances already represents a highly special sample, since it presum-
 ably represents the conductor's first choice from a number of recorded
 "takes." From these recordings, for *each piece, Epstein selected the one
 he judged to capture the optimally natural, musical execution of the pas-
 sage. These data may thus epitomize, as closely as possible, "ideal" natural
 tempo change.5

 Additionally, in an earlier paper Epstein (1985) examined a roughly
 35-min sample of the barter chant ("Himou") of the Yanomami Indians
 of Venezuela, a rhythmic ritual conversation whose tempo fluctuated,
 mostly accelerating, until a bargain agreement was reached. This sample,
 in addition to yielding a much larger data set on which to test the theory,
 provides a modicum of cross-cultural corroboration.

 5. These data thus represent an attempt to examine idealized, rather than average,
 performance. To characterize typical tempo change (as executed by, say, randomly selected
 trained musicians) would be quite interesting, but it would be a different study.
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 192 Jacob Feldman, David Epstein, & Whitman Richards

 Fig. 3. Sample 1 (Dvorak, Slavonic Dance op. 46 no. 8, mm. 243-272, conducted by
 George Szell. Columbia/Odyssey Stereo Cassette YT 34626), showing linear, quadratic,
 and cubic best fit regressions plotted, with equations and degrees of fit (R2) indicated.

 The beat durations in the samples were measured and recorded, using
 the (rapidly played) measure as the beat in all but the very slow Stravinsky
 passage, in which each quarter-note beat was a measured unit. The beats
 were measured by first transferring the recordings to 7.5 in./sec open-reel
 tape. The attack points were then marked on the tape using a conventional
 editing technique, in which the tape is run back and forth over the playback
 head by hand at very slow speed until the attack point can be identified
 exactly. The distances between the marked points were measured to the
 nearest millimeter, resulting in a final resolution of about 5 msec. The time
 courses of the five samples are displayed graphically in Figures 3-7.

 To test the fit of the polynomial models to the data, regressions to linear,
 quadratic, and cubic polynomials were performed. The regression curves
 are plotted (and the equations are indicated) in the graphs in Figures 3-7.
 Ideally, one would like to determine the true polynomial degree of each
 curve by testing the significance of the incremental contribution to the
 variance accounted for by the addition of successive higher-order terms.
 Unfortunately, however, the very large proportion of variance accounted
 for by these regressions, especially of the quadratic and cubic models,
 usually well over 90%, makes the use of significance testing problematic.
 The error term in such an analysis is the variance still unaccounted for
 with the added polynomial term, which here comes so close to zero that
 F-values are inflated, with the result that successive higher-order regres-
 sions almost always come out spuriously significant.
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 Force Dynamics of Tempo Change in Music 193

 Fig. 4. Sample 2 (Stravinsky, excerpt from The Firebird (complete ballet), rehearsal number
 19, mm. 12-17, conducted by the composer. Columbia Records Stereo MS 6328) showing
 linear, quadratic, and cubic best.fit regressions plotted, with equations and degrees of fit
 (R2) indicated.

 Fig. 5. Sample 3 (De Falla, excerpt from The Three-Cornered Hat (suite II), The Miller's
 Dance, rehearsal number 9, conducted by Herrera de la Fuente. Vox Cum Laude Record
 9047), showing linear, quadratic, and cubic best fit regressions plotted, with equations and
 degrees of fit (R2) indicated.
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 194 Jacob Feldman, David Epstein, & Whitman Richards

 Fig. 6. Sample 4 (Tchaikovsky, excerpt from Symphony no. 4, first movement, mm. 144-
 161, conducted by Herbert von Karajan. Deutsche Gramophon Digital 415 348-4), show-
 ing linear, quadratic, and cubic best fit regressions plotted, with equations and degrees
 of fit (R2) indicated.

 The R2 values are presented in Table 1. In every case but Sample 3
 (discussed later), the proportion of variance accounted for by the linear
 model is substantially lower than that accounted for by the quadratic or
 cubic model. To the eye, more importantly, the observed profiles do not
 appear to be linear: in each case (again with the possible exception of
 Sample 3) there is a strong curved component, which in most cases flattens
 out at one or both ends so that its tangent joins smoothly with that of
 the adjacent region of constant tempo. The locations at which the profiles
 flattened out were generally in accord with the composers' marked tempo
 directions; the shapes will be discussed one by one next.

 The exponential model also performed poorly. In four of the five sam-
 ples, the exponential model was slightly better than the linear one, but
 worse than either the quadratic or cubic model; in the other case the
 exponential model was even worse than the linear model. In all cases, the
 best fit exponential appeared to be primarily linear anyway, indicating that
 the curvature present in the data was not exponential in nature (that is,
 the exponential curve fit the data only to the extent that it matched the
 linear best fit).
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 Force Dynamics of Tempo Change in Music 195

 Fig. 7. Sample 5 (Himou bargain chant of the Yanomami Indians. See Epstein, 1985),
 showing linear, quadratic, and cubic best fit regressions plotted, with equations and degrees
 of fit (R2) indicated.

 In order to determine more precisely the true degree of each of these
 observed profiles, we numerically estimated derivatives (with respect to
 time) of the observed data and compared them with the derivative shapes
 predicted by the force model. Because the force model makes a prediction
 not only about the shape of the final tempo profile but also of its
 derivative- the force profile - and, similarly, any lower order derivatives,
 it is possible to "unpeel" the observed data, polynomial degree by poly-
 nomial degree, by taking successive derivatives, to see what kind of a curve
 it really is. Differentiation was performed by first smoothing the data with
 a discrete smoothing operator (of width 5 for the first four examples, and
 width 50 for the much longer fifth example). Then, each successive de-

 table 1

 R2 for Best Fit Linear, Quadratic, and Cubic Polynomials

 Sample Linear Quadratic Cubic Exponential

 1 .629 .864 .944 .787
 2 .699 .917 .974 .765
 3 .932 .974 .975 .960
 4 .821 .894 .946 .818
 5 .526 .897 .943 .532
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 196 Jacob Feldman, David Epstein, & Whitman Richards

 rivative was taken by a discrete forward difference operator (of width 2
 for the first four samples, and 10 for the fifth sample; all mask widths were
 chosen by eye to produce cleanest output). Derivatives down to (but not
 including) the first apparently zero output are shown in Figures 8-12,
 shown lined up with the raw beat durations. In each case, either the third
 or fourth derivative was apparently zero, at least over a large central
 portion of the sample, indicating polynomials of degree 2 or 3 in each case.
 Theoretically, the derivative before the first zero would be a constant, and
 hence nonzero, but in practice in each case the value of the constants was
 below the noise floor and hence apparently zero, so actually the last
 displayed derivative in each case is the presumably linear one.

 We now proceed to examine the five samples one by one, considering
 both the general similarity of the linear, quadratic, and cubic best fit curves
 (Figures 3-7) to the shapes predicted by the force model, and also the
 similarity of its derivatives (Figures 8-12, in which the raw data are
 reproduced for side-by-side comparison) to the appropriate predicted
 force profiles.

 SAMPLE I (DVORAK)

 Examining Figure 3, this ritard is clearly parabolic, possibly with a cubic
 component. Its first derivative (Figure 8b) appears to be parabolic and its
 second (Figure 8 c) linear (except for two presumably spurious points at
 the end), suggesting that the cubic component in the tempo profile is
 actually important. In either case, the tangent of the curve flattens out near
 the beginning of the ritard, indicating a smooth join with the previously
 prevailing tempo, and thereafter rises in a nonlinear manner. There is no
 smooth join at the end of the passage, presumably because at this point
 the composer indicates a sudden discontinuous jump back to the original
 tempo.

 SAMPLE 2 (STRAVINSKY)

 This ritard (Figure 4) is nearly identical in shape to the previous sample.
 Again, the shape of the plotted regressions reveals a parabola, and the
 derivatives (Figure 9) suggest that the cubic component may be important.
 Again, the tangent of the curve flattens out near the beginning, indicating
 a smooth join with the previous section of music. At the other end, Stravin-
 sky marks a new tempo (which is initially so slow that there is no longer
 any apparent beat or forward momentum), so that as in Sample 1 there
 is no occasion for a smooth join to a new tempo.
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 Force Dynamics of Tempo Change in Music 197

 Fig. 8. Sample 1 (Dvorak), showing (a) original beat durations with best cubic fit plotted
 for comparison, and adjoining tempos and composer's markings indicated; (b) first de-
 rivative; (c) second derivative.

 SAMPLE 3 (DE FALLA)

 This passage, an accelerando, is somewhat problematic. The plot (Fig-
 ure 5) suggests a nonlinear curve of possibly higher order, as the points
 wander in an extremely orderly manner above and below the linear
 regression line. This complexity is in part due to the two small step
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 198 Jacob Feldman, David Epstein, & Whitman Richards

 Fig. 9. Sample 2 (Stravinsky), showing (a) original beat durations with best cubic fit plotted
 for comparison, and adjoining tempos and composer's markings indicated; (b) first de-
 rivative; (c) second derivative.

 discontinuities (marked "more lively") that the composer has indicated at
 even intervals in the middle of the passage. The first derivative (Figure 10b)
 on the other hand, manifests the characteristic central hump of the de-
 rivative of the cubic spline (Figure 2), except for the last few points.
 Correspondingly, the second derivative rises linearly from below the axis
 to above, at any rate over part of its range, as expected. The musical
 context of this passage is unique among our samples in that at the end
 of the accelerando the piece comes to a full stop. There is thus no later
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 Fig. 10. Sample 3 (De Falla), showing (a) original beat durations with best cubic fit plotted
 for comparison, and adjoining tempos and composer's markings indicated; (b) first de-
 rivative; (c) second derivative.
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 200 Jacob Feldman, David Epstein, ôc Whitman Richards

 Fig. 11. Sample 4 (Tchaikovsky), showing (a) original beat durations with best cubic fit
 plotted for comparison, and adjoining tempos and composer's markings indicted; (b) first
 derivative.

 section of constant tempo to which this passage needs to join; rather, the
 conductor's goal tempo here seems to be an integral multiple (3:1) of the
 initially prevailing tempo.6

 6. Integral tempo ratios are apparently a ubiquitous and important phenomenon, and
 they are considered more fully in both Epstein (1979) and Epstein (in press).
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 Force Dynamics of Tempo Change in Music 201

 Fig. 12. Sample 5 (Himou), showing (a) original beat durations with best cubic fit plotted
 for comparison, and adjoining tempos and composer's markings indicated; (b) first de-
 rivative.

 SAMPLE 4 (TCHAIKOVSKY)

 This accelerando (Figure 6) is the only sample that unambiguously
 seems to require the smooth spline, in that there is ongoing music in both
 adjacent regions, with the same basic pulse unit but at different tempos.
 Exactly as expected, then, its profile has a conspicuous curvature com-
 ponent that flattens out near both ends. The first derivative (Figure lib)
 is clearly linear, confirming the nonlinearity in the tempo profile, but
 casting some doubt on the cubic component. In either case, though, the
 profile is not linear.

 SAMPLE 5 (HIMOU)

 This sample (Figure 7) is clearly parabolic, starting with a steep negative
 tangent and flattening out at the end. The almost perfectly linear first
 derivative (Figure 12a) corroborates this model. The similarity of the
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 derivative with the previous sample is striking. It is intriguing that in two
 such sharply contrasting musical and cultural traditions as European mu-
 sic and Yanomami chant protocols, a nearly identical form was produced.

 All five samples, in summary, exhibit a primarily nonlinear shape. The
 problematic Falla (Sample 3), while not fitting any simple low-order type,
 clearly curves above and below the best fit straight line in an orderly
 although more complex manner, visibly following the composer's more
 complex markings. The other four examples and their derivatives all have
 shapes that are consistent with simple low-order force events, where the
 force is either linear or a simple quadratic form, and the resulting tempo
 is either parabolic or spline-shaped. The force model thus accounts neatly
 for the observed tempo profiles.

 Conclusion

 Musical tempo might, in principle, be changed by any arbitrary con-
 tinuous function with different starting and ending values. The performer
 is not obligated to follow constraints such as those suggested in this paper:
 no physical laws, for example, require it. Yet while change of tempo by
 skilled musicians may seem to be under conscious, voluntary control, the
 matches found here between observed profiles and theoretical ideal shapes
 suggest that performers actually conform in detail to mathematical con-
 straints of which they presumably have no conscious knowledge. If this
 conformance actually were responsible for the aesthetically satisfying form
 achieved by skilled musicians, as we speculate, it suggests a paradigm for
 "beauty," or at least naturalness of form, that is refreshingly concrete.
 Furthermore, as we have discussed, because these ideal shapes were de-
 rived from the force model, this conformance seems to reflect an under-
 lying, unconscious conception of music as a quasi-physical thing that
 "moves forward" as it unfolds through time, now speeding up and now
 slowing down, in accord with the moment-to-moment flux in its rhythmic,
 harmonic, and affective character- a conception reflected in musicians'
 common use of terms such as "movement," "motion," and "flow" to
 characterize the progression of music. We propose, in effect, that the
 relationship between tempo change (designated by the score and manip-
 ulated by the performer) and real physical movement (controlled by phys-
 ical forces) is somewhat more than just a metaphor: the formal machinery
 is largely the same. The "forces" we invoke are neither actual physical
 forces, of course, nor are they literally due to physical constraints such
 as those that control the movement of a conductor's baton or a drummer's
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 stick. That these mental analogs of force actually obey constraints as if
 they were physical is thus all the more remarkable.7

 7. This research was supported in part by AFOSR 89 0504. The data were collected
 while the second author was working under an Alexander von Humboldt Foundation
 Award. We thank an anonymous reviewer for helpful comments.
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