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Stopping In running and in music performance

Part I1. A model of the final ritardando based on runners’

deceleration
Anders Friberg and Johan Sundberg

Abstract

A model for describing the change of tempo in final ritardandi is presented. The
model was based on the previous finding that runners’ average deceleration can be
characterised by a constant brake power. This implies that velocity is as a square-
root function of time or alternatively, a cubic-root function of position. The
translation of physical motion to musical tempo is realised by assuming that
velocity and musical tempo are equivalent. To account for the variation observed
in individual measured ritardandi and in individual decelerations, two parameters
were introduced; (1) the parameter q controlling the curvature with g=3 corre-
sponding to the runners’ deceleration, and (2) the parameter veng corresponding to
the final tempo. A listening experiment gave highest ratings for g=2 and g=3 and
lower ratings for higher and lower g values. Out of three tempo functions, the
model produced the best fit to individual measured ritardandi and individual
decelerations. A commonly used function for modelling tempo variations in
phrases (duration is a quadratic function of score position) produced the lowest
ratings in the listening experiment and the least good fit to the measured individual
ritardandi. The fact that the same model can be used for describing velocity curves
in decelerations as well as tempo curves in music provides a striking example of

analogies between motion and music.

Introduction

In a previous article we measured the velocity of
runners as they stopped from running (Friberg &
Sundberg, 1997). Discarding the samples that
received the lowest mean rating for “aesthetical
quality” by an expert panel, it was found that the
average velocity curve was very similar to the
average tempo curve of final ritardando
(Sundberg & Verillo, 1980). It was also found
that the runner kept the decelerating power
approximately constant during the entire
deceleration. This article presents a model of the
final ritardando which is based on this average
velocity curve, and complemented by two
parameters. The parameters were needed to
account for the variation occurring in individual
ritardandi observed in music performances. The
resulting set of curves is evaluated both in a
listening experiment and by fitting the model
parameters to measured ritardandi and to
runners’ decelerations.

Representation of tempo

The choice of dependent and independent vari-
able is obviously crucial in an attempt to

elaborate a model for tempo variation. Different
strategies for representing tempo data have been
used in the past.

The choice of independent variable has also
varied. Most researchers have used score
position. Thus, each note value is expressed in
terms of the number of shortest unit, for
example 16°th notes, so that the duration of a
quarter note is expressed as four units. Another
possibility for the independent variable is time.
This was recommended by Todd (1995) who
suggested that ongoing time is more easily
perceived than the more abstract score position.
An advantage of using time is that tempo curves
then tend to assume simpler forms. There is,
however, a computational problem. To be
applicable to a music example, an arbitrary
tempo curve expressed as function of time must
be transformed into a function of score position.
Unfortunately, such transformations have an
analytic solution only for some simple cases.

As dependent variable tempo, defined as the
inverse of tone duration, seems a natural choice.
However, also beat or tone duration has been
used.
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Figure 1. A comparison of different tempo representations for four simple final ritardando
curves. Duration as a function of position (x) (left) compared with tempo as a function of
position (middle) or tempo as a function of time (t) (right).

Figure 1 shows some simple ritardando curves
and how they appear in three different repre-
sentations. The left column of panels in Figure 1
shows duration as a function of score position X,
the middle columns of panels shows the same
relations transformed into tempo as function of
score position, and the right column of panels
shows the same relations expressed as tempo as
function of time. The choice of variables
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obviously affect the shape of the curve pro-
foundly. A change of the independent variable
from score position to time (mid and right
columns) results in an more concave or less
convex curvature. For example, when the tempo
is a square root function of score position, it
becomes a linear function of time. A quadratic
relation between duration and score position
(top left panel) has been commonly used in the



past. Note that this curve, when transformed into
a curve showing tempo versus score position
(top middle panel), starts with a convex and
ends with a concave curvature.

Previous models

Sundberg & Verrillo (1980) measured the note
durations of 24 final ritardandi in phonograph
recordings of baroque music. Out of these data
they derived a model consisting of two phases,
each of which showed a linear decrease of
tempo when expressed as function of score
position. The length of the second phase
corresponded to the last musical motif of the
piece.

Several attempts have been made to derive
musical tempo variations from physical motion.
An early example was provided by Kronman &
Sundberg (1987) who used a model of a
runner’s deceleration. Thereby, assuming that
steps corresponded to beats, they hypothesised
that step length and deceleration force remain
constant throughout the entire deceleration. This
implied that the tempo curve was a square root
function of score position. This appealing
analogy between steps and beats had later to be
abandoned, however, when confronted with
measurements on real runner’s decelerations
(Friberg & Sundberg, 1997). (As we have
explained elsewhere (op. cit.), the analogy
between a runner’s deceleration and the final
ritardando that was presented by Kronman and
Sundberg was based on an erroneous sub-
stitution of the independent variable in the
Sundberg and Verrillo’s investigation, score
position instead of normalised time.)

Feldman et al. (1992) investigated curves of
performed accelerandi and ritardandi in five
examples that were selected by David Epstein
from commercially available recordings. The
authors developed a simple force model of
physical motion which assumed tempo to be
equivalent with velocity. They regarded smooth
beginnings and endings important characteristics
of such tempo changes, and therefore proposed
that tempo should be expressed as a quadratic or
cubic function of time. These functions
correspond to a linear and a quadratic change of
force with time, respectively. However, in the
subsequent analysis they used beat duration as a
function of score position instead of tempo as a
function of time. Yet, they fitted their data,
expressed in this new form, to linear, quadratic,
or cubic functions. They found the two latter
alternatives  reasonably  appropriate  to
approximate these data and concluded that their
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force model neatly accounted for the observed
tempo profiles.

Repp (1992a) measured the timing of 28
performances of Robert Schumann’s Traumerei.
The accelerando-ritardando shape of a salient,
six-note motif was successfully modelled by
expressing tone duration as a quadratic function
of score position. He also carried out a
perceptual evaluation of this function applied to
synthesised piano performances of the same
music example (Repp, 1992b).

Todd (1985) presented a model of phrase
related tempo changes in music performances.
In this model, tone durations were expressed as
quadratic functions of score position. Later he
proposed a modified version (Todd, 1995) based
on an analogy between velocity in physical
motion and tempo in music performance, thus
implying equivalence between physical position
and score position. He simply assumed the
deceleration and acceleration forces to be
constant which implied linear variations of
tempo as a function of time. It can be noted that
this case corresponds to a square root function
of score position (Figure 1c, middle and right
panels), thus similar to the model presented by
Kronman & Sundberg (1987).

Building on Todd’s idea of a quadratic
relation between tempo and score position co-
author AF developed a model which related
tempo changes to the hierarchical phrase
structure (Friberg, 1995a). The model allowed
for variations that typically can be observed
between different experts’ performances of the
same piece. Thus, when tested against Repp’s
measurements of the 28 performances of
Traumerei, the model successfully accounted for
the phrasing variation observed among these
performances.

Summarising, the most fruitful analogy
between music performance and physical
motion is to assume that musical tempo is
equivalent to velocity. Furthermore, the musical
rubato has been described (1) as a quadratic
change of duration versus score position, or (2)
as a linear change of tempo versus time whilst
the data from running suggest the alternative
that (3) tempo is a square root function of time
(Friberg & Sundberg, 1997); it is unclear which
description is more accurate.

Model

Basic for the construction of our model for final
ritardandi was the assumption that the brake
power was constant in a runner’s deceleration.
This implies that the kinetic energy is a linear
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function of time and, since kinetic energy is
proportional to velocity squared, velocity will be
a square root function of time. Let v be velocity
(tempo), x be position (score position), then

X " .
Primarily for practical purposes, x was chosen
as the independent variable. Integrating v,
solving for t, and substituting t in (1) we obtain

3 2 1
jdx~t2 =>t~x3=>v(x)~x?®

Thus, velocity (tempo) is proportional to the
cubic root of position (score position). Re-
inspection of the individual ritardandi analyzed
by Sundberg & Verillo (1980) revealed variation
with regard to the overall curvature. To account
for this variation, a curvature parameter q was
introduced:
1

v(x) ~ x4

By changing the constant g a number of
different curvatures can be obtained, including

the runners’ mean deceleration (q=3) as well as
the previously mentioned square-root function
(9=2).

Unlike velocity in locomotion, the tempo
never reaches zero in music, if tempo is defined
as the inverse of tone duration. This implies the
need for a second parameter, the final tempo
Vend- The resulting model of the tempo (v) as a
function of score position (x) was defined as

V(x) = [1+ (v, —1)X]; 2

Here, tempo and ve,g are normalized with
respect to pre-ritardando tempo (vpe) and
position is normalized with respect to total
ritardando length measured in score units. Score
position x=1 occurs at the onset of the last note.
Figure 2 shows the resulting tempo curves for
four different g values. The values of g=1, q=2,
and g=3 correspond to (a) a linear function of x,
(b) a square root function of x (i.e., a linear
function of t), as proposed earlier by Kronman
& Sundberg and Todd, and (c) the approxi-
mation of runners' deceleration, respectively.
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Figure 2. The ritardando model with four different g values (g=1,2,3,4) and the quadratic duration
function. The final tempo was fixed at veng . These were the five curves used in the listening

experiment.
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Table 1. Music examples, preritardando tempi (vyre) and the final tempo values (Veng) used in the
listening experiment. Note that ve,q is normalized with respect to Vpr.

Music example Abbr. Vore Vend
(shortest notes/s)

J. S. Bach: Eng. Suite 2 Prel., E2P 6.48 0.3

last 5 meas.

J. S. Bach: Wohltemp. clav. | WIP 4.47 0.4

Prel. 1, last 5 meas.

minor second sequence (Db4-C4- m2 5 0.4

Db4-C4-Db4-C4-...Db4), 21 notes
totally

The translation from the continuous curve to
discrete tones is realized by integrating the
inverse of the tempo function (Eq. 2) (see Todd,
submitted).

J~1 d
q

t

—=|——=|1+(
v dx J [ (

Let kK=Vvg,—1. Then, we obtain time as

function of score position:

o |-

q
end

—~ l)x]f

q(l+ kx)%
(a-Dk

The integration constant was determined by
setting t(0) = 0. The duration (DR) of a tone is
given by the time difference for the x values
corresponding to the onset X, and offset Xqs Of
the tone.

DR = t(Xoff ) - t(Xon) =

—q

t(x) = 1

,q> 3)

(4)
a-1 a-1
q q

q(1+kxoff) _q(1+kxon)

(9 -Dk

The advantage of using t(x) to determine the
tone durations is that it is independent of note
values. For example, four sixteenth notes will
add up exactly to the duration of one quarter
note.

The model (Eg. 2) has the advantage that it is
easy to transform, if time instead of position is
preferred as the independent variable. Tempo as
a function of time can be obtained by solving (3)
for x and substituting the result in (2):

v(t) =[1+(v% —1)t]q11

end

Note that this equation is essentially the same as
equation (2) with the value of g decreased by
one.

Perceptual evaluation

A listening experiment was performed to assess
the preferred curvature value q in different
music examples. The previously mentioned
phrasing curve with duration as a quadratic
function of score position was included as an
additional alternative.

Method

Stimuli and procedure

Three different music examples were used, two
excerpts from pieces by J.S. Bach and a
sequence of two alternating notes, a minor
second apart, see Table 1. The purpose of the
Bach examples was to have two different
musically realistic examples. The minor second
example was chosen to attain a minimum of
musical content without destroying the percep-
tion of the ritardando curve; in our informal
pretests, we found that a simple tone repetition
was not enough to differentiate the curvatures.

Four different q values (g=1,2,3,4) were
used for the ritardando model (Eqg. 2). For the
phrasing curve with duration as a quadratic
function of score position the expression v(x) =
1/(0.7X%Veng+1) was used.

The preritardando tempo (Vpe), ritardando
length and ritardando depth (veng) Were fixed for
each music example throughout the test, see
Table 1. These values were determined in
collaboration with two professional musicians,
Lars Frydén and Monika Thomasson. In all
examples, the ritardando started at the first note
onset occurring at least 1300 ms, as measured in

37



Friberg & Sundberg: Stopping in running and in music performance

preritardando tempo, before the onset of the last
note.

In the pretests it was found that the duration
of the penultimate note seemed important to the
perceived depth of the ritardando. The method
described above for translation of the continuous
tempo function to discrete note durations did not
permit the setting of an exact value for the
lengthening of the penultimate note. Therefore,
a second normalization was performed so that
the duration of the penultimate note was set to
1/ (Vend *Vpre)-

Special attention had to be paid to the last
note. Its note value is sometimes the same as
that of the preceding note but sometimes
considerably longer. In the latter case, no further
prolongation of the last note is called for. On the
contrary, such long final notes can even be
shortened in a real performance. In the test, the
duration of the final note was simply set to 1.25
times the duration of the penultimate note.
However, if the last note was already longer
than this, it was left unchanged.

To exclude the influence of dynamics, the
music examples were played on a sampler
synthesizer (SampleCell) using recorded tones
from a harpsichord. The ritardando model was
implemented in the Director Musices program
(Friberg, 1995b) on a Macintosh computer. The
examples were recorded on a DAT tape with
some artificial reverberation (Yamaha REVY7).
All subjects listened to the tape over earphones
adjusted to a comfortable listening level.

The first six examples on the test tape were
used as practice trials. They were followed by a
total of 51 test trials (5 curves X 3 music
examples X 3 repetitions) in random order. The
test took 17 min.

The subjects were asked to mark on a 10 cm
long visual analogue scale on an answering
sheet how musical they found the performance
of the ritardando. The endpoints of the line were
labelled “extremely good” and “extremely bad”.
The listeners were also instructed to try to
ignore the performance of the music preceding
the ritardando as well as the length of the final
note. The rating values used in the subsequent
analysis was defined as the length in mm from
the “extremely bad” endpoint, i.e. the better
ritardando, the higher the rating value.

Subjects

The subjects were 19 students all taking the
course in music acoustics at KTH. After the test,
they answered a questionnaire about their
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musical background. The questionnaire asked if
they had experience of performing music, if so,
what instrument, how many years of perform-
ing, how many hours per week and in which
music styles. In addition, they could make any
general comment about the test.

According to the answers from the
questionnaire, most of the subjects could be
considered as amateur musicians. The final
ritardando is mostly heard in classical music and
therefore mainly classical musicians would have
practical experience of performing final ritar-
dandi. Nine subjects reported that they had some
experience of classical music. One of these had
professional experience as a classical musician.
Most subjects found the test quite difficult with
the exception of the professional player. Thus,
the task was difficult for listeners lacking
previous experience with performance of
ritardandi on a professional level.

Results

Using the subjects' ratings as the dependent
variable the results were submitted to a
repeated-measures analysis of variance perform-
ed by the SuperANOVA 1.11 program for
Macintosh. The within-factors were 5 curves X
3 music examples X 3 repetitions. Despite the
difficulty of the test, the main effect of curve
was highly significant (p<0.0001), indicating
that the listeners could clearly differentiate the
curves. The main effects of music example and
repetition were also significant (p<0.0001 and
p<0.015). No interaction terms were significant.
The main effect of music example and repetition
disappeared, when the m2 example was
excluded from the analysis. The fact that there
was a strong effect of repetition only in the case
of the m2 example may indicate that this
example had a strange musical content that,
however, the listeners gradually got used to.

The mean ratings for the different curvatures
are shown in Figure 3. They reveal that the two
curvatures that received the highest ratings
originated from the model with g=2 and g=3.
The first value corresponds to the model
supported by Kronman & Sundberg (1987) and
by Todd (1995), while the second value corre-
sponds to the curvature derived from runners’
decelerations. Both for higher and lower q
values and the quadratic duration, the mean
ratings were lower as indicated by a highly
significant contrast analysis resulting from a
comparison of the cases q=2 and gq=3 with the
three remaining alternatives (p<0.0001).
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Figure 4, showing the means for each music
example and curve, offers a more detailed repre-
sentation of the results. First, it can be noted that
for all curves the minor second example was
rated much lower than the other examples.
Obviously, despite the instruction to concentrate
on the ritardando, the subjects were unable to
disregard the musical context. Second, the
maximum rating was obtained for the q=2 curve
in the E2P example and for the g=3 shape in the
WI1P example. This suggests that the optimum
curve is dependent on the music example. A

contrast analysis comparing g=2 for E2P and
g=3 for W1P with q=3 for E2P and g=2 for
WI1P showed a barely significant difference
(p<0.04). Further testing with more skilled
listeners is needed to further test this difference.

Matching the model to
measurements

The model with =3, i.e. the runners’
deceleration, was previously found to fit well
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Figure 5. Left panel: The model (line) fitted to the mean ritardando curve (diamonds) from Sundberg
and Verillo. Right panel: The model (line) fitted to the mean velocity curve (diamonds) of the runners’
deceleration. Note that time rather than position is used as the independent variable.

with the average ritardando shape (Sundberg &
Verillo, 1980; Friberg & Sundberg, 1997). In
this section, the ability of the model to fit
performed mean and individual ritardandi as
well as runner’s mean and individual
decelerations will be examined.

The q and Ve parameters in the model,
defined in Eq 2, were varied by means of the
solver function in Microsoft Excel 7.0, such that
the sum of the squared distances between the
model and the measured data was minimized. In
addition, a third parameter, Vosset, Was varied in
the optimizing process. This parameter simply
added a constant to the model.

Average curves

As an initial check of previous results, the model
was fitted to the curves for the mean ritardando
and the mean deceleration (Friberg & Sundberg,
1997), see Figure 5. The fit is good in both
cases. In the case of the deceleration curve,
however, this was expected, as the model was
originally derived from this curve. Figure 5 also
specifies the optimal values of the parameters q
and Veng. For both cases the g values were close
to 3. The small difference between q=3.4 and
g=2.8 is probably of minor relevance; while our
previous results showed that a q difference of
1.0 was clearly perceptible, an informal listening
test suggested that a g difference of 0.6 was not
noticeable.
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Individual ritardandi measured by
Sundberg and Verillo

The model was fitted also to individual
ritardandi taken from the original raw data by
Sundberg and Verillo. To improve the reliability
of the fitted curvature data only ritardandi with a
smooth shape, containing a minimum of
individual note departures, were selected. Thus,
only the performances with at least 6
consecutive final notes with monotonically
increasing durations were used. In this way, 12
final ritardandi were selected out of totally 22,
all by J.S. Bach (Table 2). Apart from the
present model, two other alternatives were tried.
As note duration is frequently assumed to be a
quadratic function of score position, one
alternative was a quadratic polynomial in which
the three parameters were fitted to measured
durations (henceforth quadratic duration). In the
other alternative, a similar quadratic function
was used to approximate the tempo rather than
note duration (henceforth quadratic tempo). The
fitted model parameter values and the resulting
determination coefficients (r?) for the 12
examples are listed in Table 2.

Figure 6 shows the model and the two
alternatives fitted to the first music example
(WIP). Notice that the quadratic duration has the
undesired property of an initial tempo increase.
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Table 2. Music examples used in the test where the model was fitted to data for individual ritardandi
measured by Sundberg & Verillo (1980), keeping their abbreviations (parentheses). The values of the

parameters g, Vend and Vogrset

that generated the best fit of the model are also listed. The three

rightmost columns show the determination coefficients r? for the model and for the two alternatives

tried.
Music examples Fitted model parameters |Squared correla;tion coefficient
r
Quanraztic Quadratic

Notes q Vend Voffset Model duration tempo
W. clav | Prel. 1 (WIP) 10 2.5 0.32 0.005 | 0.982 0.927 0.975
W. clav Il Prel. 1 (WP1) 8 2.1 0.37  0.0001 | 0.980 0.989 0.983
W. clav Il Prel. 2 (WP2) 7 2.4 0.51 0.03 0.967 0.989 0.977
W. clav Il Fug. 3 (WF3) 6 1.2 0.48 -0.03 0.969 0.951 0.968
W. clav Il Fug. 5 a (WF5) 7 4.2 0.50 0.01 0.995 0.970 0.995
W. clav Il Fug. 5 b (WF5) 8 2.6 0.37 -0.02 0.975 0.919 0.966
Eng. Suite 1 Allem. (E1A) 6 2.0 0.45 -0.03 0.982 0.943 0.978
Eng. Suite 2 Allem. (E2A) 11 3.7 0.37 0.02 0.975 0.927 0.980
Fr. Suite 4 Allem. (F4A) 6 4.2 0.50 0.02 0.991 0.959 0.986
Fr. Suite 6 Allem. (F6A) 7 2.4 0.45 0.02 0.981 0.965 0.979
Fr. Suite 6 Cour. (F6C) 7 5.0 0.46  -0.008 | 0.994 0.902 0.959
Italian Conc. Mvt. 3 (IC3) 7 1.2 0.34 -0.01 0.970 0.961 0.970
Mean 2.8 0.43 0.001 | 0.980 0.950 0.976
SD 1.2 0.07 0.02 0.01 0.03 0.01
Max 5.0 0.51 0.03 0.995 0.989 0.995
Min 1.2 0.32 -0.03 0.967 0.902 0.959

As shown in Table 2 the mean q value (q=2.8) is The model produced the highest mean

very close to the initial value of q=3 that was
derived from the runners’ decelerations. Note
that example WIP was also used in the listening
experiment above. It received a q value of 2.5
which is just in the middle of the listeners’
preference, as seen in Figure 3. However, q
varied substantially between examples. Indeed,
two examples yielded q=1.2, i.e., the tempo
decreased almost linearly with score position
and in three examples g exceeded the value of
four. Such low and high values of g received
low ratings in the listening test above, and were
yet obviously acceptable in these performances.
This supports the assumption above that the
optimal ritardando curve depends on some
characteristics of the music example, e.g.,
musical structure and tempo. Another factor of
potential relevance is the performer’s intention
or preference. The final tempo v Vvaried
comparatively less, between 32% and 51% of
the initial tempo.

correlation with the measurements (mean r® =
0.98). A t-test comparing the mean r® for the
model and the mean r? for the quadratic duration
alternative yielded a significant difference
(p<0.003): this means that, on average, the
model approximated the measured ritardandi
better than the quadratic duration.

Although, the correlation was slightly better
for the model than for the quadratic tempo
polynomial, this difference was not significant.
With regard to the shortest ritardandi, consisting
of no more than six notes, it could be argued
that many slightly curved functions would offer
a good fit. Longer ritardandi, on the other hand,
often exhibited a more pronounced tempo
decrease in the end than in the beginning. This
case can be accounted for by the model by
means of a relatively high value of q (Figure 7).
The quadratic tempo function fails to produce
the characteristic increased curvature in the end
of the ritardando.
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Figure 6. Model(left), quadratic tempo (middle) and quadratic duration (right) functions fitted to a
measured performance of the music example WIP.
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Figure 7. Model (left), quadratic tempo (middle) and quadratic duration (right) functions fitted to a
measured performance of a comparatively long ritardando (music example WP19 in Sundberg and

Verillo, 1980, not included in test referred to in Table 2). The increased curvature in the end of the

ritardando can not be modelled with a quadratic tempo function as seen in the figure.
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Figure 8. Model(left), quadratic tempo (middle) and quadratic duration (right) functions fitted to a
ritardando measured by Feldman et al. (1992).
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Table 3. Results of attempts to fit the model and a quadratic velocity function to each of the 12
decelerations used by the authors (1997) for calculating a mean deceleration curve. The two rightmost
columns show the determination coefficients r?for the model and for the quadratic velocity function.

q Vend Voffset Mogel Quadratic2 velocity
r r
Mean 2.8 0.27 0.004 0.990 0.9778
SD 0.5 0.08 0.02 0.01 0.02
Max 3.4 0.39 0.03 0.999 0.9995
Min 1.8 0.13 -0.02 0.978 0.939

Individual ritardandi measured by
Feldman, Epstein and Richards

Feldman et al. (1992) measured two ritardandi
in performances of orchestral music. These
ritardandi occurred within the pieces, i.e. not in
a final position. Also, they were clearly longer
than the final ritardandi considered above, and
were measured on the beat level instead on the
note level. The same three functions as above
were fitted to the example (Sample 1: A Dvorak,
Slavonic Dance, op 48:8, measures 243-272),
which had a smoothest shape (Figure 8). Despite
the difference in style, length and context, the
result is similar to that observed in Figure 7. The
model produced the best fit, slightly better than
that of the quadratic tempo function, especially
in the end of the ritardando. The fit obtained
from the quadratic duration gave the least good
fit.

Individual decelerations of runners

Friberg & Sundberg (1997) used 12 selected
decelerations for computing the average velocity
curve for runners’ deceleration. The model and a
quadratic velocity function was fitted also to
each of these 12 decelerations. Table 3 shows
the results in terms of averages across examples.

Table 3 shows that, again, the model
produced a better fit than the quadratic velocity
alternative. According to a two-tailed t-test, the
means of the determination coefficients r?
differed in this case significantly (p<0.02)
between the model and the quadratic velocity
function.

Discussion

In discussing the model proposed here for
description of final ritardandi and runners’
decelerations, certain limitations should be born
in mind. The start of the final ritardando is
difficult to identify in measurements. Perceptu-
ally a smooth onset of the ritardando is
important, as mentioned. For example, informal

listening tests revealed that the onset of the
ritardando was far too abrupt when the
alternative linear tempo function of score
position was used. Obviously, a smooth onset
complicates the identification of the starting
point. On the other hand, a rigorous method was
applied for identifying the ritardando onsets for
the individual ritardandi referred to in Table 2:
all tones following the ritardando onset show a
progressively decreasing tempo. This definition
favours late ritardando onsets. Such cases tend
to reduce the value of g.

There are also other limitations. The
perception of a final ritardando would depend
not only on tempo changes but also on dynamic
changes. This parameter was not analyzed in the
present investigation. Another important factor
is its total length. What is considered an
appropriate ritardando may also depend on the
instrument played. In view of the analogies
suggested by our finding between music and
locomotion, it would be tempting to explore
possible musical equivalents of e.g. inertia and
its effect on the final ritardando.

It appeared that it was more difficult for the
listeners to differentiate the tempo curves in a
musically unnatural example. In selecting the
music examples for the listening test, the authors
frequently noted that the perceived character of
the different curves were well exposed by real
music examples and almost impossible to
distinguish in unrealistic, simple examples, such
as a sequence of tone repetitions. On the other
hand, the tempo curve seems to originate from
the paramount experience of locomotion. Maybe
the musical unnaturalness of such examples
distracts the listener’s attention from the tempo
curve. In any event, realistic musical examples
seem crucial for a correct evaluation of any
music performance model.

The quadratic duration curve gave the
poorest results, both in the listening experiment
and in the curve fittings. This was surprising
since it had been successfully applied to
describe tempo curves associated with phrasing
(Todd, 1985; Repp, 1992; Friberg, 1995a; Penel
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& Drake, in press). Transformed to tempo as
function of score position the quadratic duration
curve assumes a shape characterized by a
gradual decrease of the curve steepness, as was
illustrated in Figure 1a. If translated to velocity
in locomotion such a curve shape would imply
that the runner refrains from spending energy on
reduction of speed toward the end of the
deceleration process, thus suggesting a continu-
ation of the movement. This message appears
quite appropriate at phrase endings to a music
listener; the music continues beyond the phrase
boundary. Indeed, according to informal listen-
ing tests the impression of an approaching final
stop disappeared when the quadratic duration
curve was used for final ritardandi; it was no
more obvious that the last tone really was the
last.

Surprisingly, we found two cases of q=1.2 in
the fittings of the individual ritardandi, i.e., the
tempo decreased almost linearly with score
position. Such a curve (g=1) was rated low in
the listening experiment. Also, when applied in
informal tests to a variety of music examples,
this curve sounded musically unacceptable. As
with the quadratic duration, the problem was
that the piece did not appear to approach a final
stop during the last part of the ritardando.

A factor of possible relevance to our results
is musical style. The measurements and fittings
in which the quadratic duration was used mainly
concerned romantic classical music while the
present final ritardando model was mostly tested
on Baroque music (except for Sample 1 from
Feldman et al. (1992) which was composed by
Dvorak). It is possible that the poor success of
the quadratic duration alternative reflected that
these two music styles are associated with
different types of motion. It is also possible that
the final ritardando model would work as a
description of the tempo modulation in phrases.
We plan to check this possibility in future
research.

Why does our model work? The two cases
g=2 and g=3, which received the highest ratings
in the listening experiment, have a very simple
form in terms of locomotion; the former implies
that the breaking force is constant while the
latter implies that the breaking power is con-
stant. Such simple relations would facilitate
prediction of the final stop.

Conclusion

The present model of the final ritardando was
based on the previous finding that the braking
power is approximately constant during runners’
decelerations (Friberg & Sundberg, 1997). By
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introducing two parameters, g for curvature and
Veng for the end value, the model could well
describe the average final ritardando tempo
curve, the average runners’ decelerations velo-
city curve, individual final ritardandi, and
individual decelerations. These findings sub-
stantiate the common assumption  that
locomotion and music are related.

The listening experiment indicated a
preference for g values between 2 < g <3, where
g=3 corresponds to the average velocity of the
runners’ decelerations and =2 to a previously
proposed model for final ritardandi (Kronman &
Sundberg, 1987) as well as to a model for phrase
related tempo curves presented by Todd (1995).
However, the curvature range was larger in the
individual ritardandi than in the listening
experiment, thus suggesting influence of music-
al factors. Describing duration as a quadratic
function of score position, previously found
applicable to tempo modulations occurring in
phrases, was tried with poor results both in a
listening test and in attempts to match individual
measured ritardandi.

Acknowledgements

We gratefully acknowledge the kind assistance
from Hans Norén and his colleagues at the
Swedish Radio, Stockholm, for providing a
harpsichord in excellent condition for the tone
recordings used in the listening experiment. Lars
Frydén and Monica Thomasson kindly assisted
in the selection of music examples and model
parameters for the listening experiment. The
work was supported by a grant from the Bank of
Sweden Tercentenary Foundation.

References

Feldman I, Epstein D & Richards W (1992). Force
dynamics of tempo change in music. Music
Perception, 10/2: 185-203.

Friberg A (1995a). Matching the rule parameters of
Phrase arch to performances of “Traumerei”; A
preliminary study. In: Friberg A & Sundberg J
(eds.), Proc of the KTH symposium on Grammars
for music performance, May 27, 1995, 37-44.

Friberg, A (1995b). A Quantitative Rule System for
Musical Performance. Doctoral dissertation, Royal
Institute of Technology, Sweden.

Friberg A & Sundberg J (1997). Stopping in running
and in music performance. Part I. Runner’s
decelerations and final ritards. TMH-QPSR, KTH,
1/1997: 67-74.

Kronman U & Sundberg J (1987). Is the musical
ritard an allusion to physical motion? In:
Gabrielsson A (ed.), Action and Perception in
Rhythm and Music, Stockholm: Royal Swedish
Academy of Music, Publication No. 55: 57-68.



Penel A & Drake C (in press). Sources of timing
variations in music performance: a psychological
segmentation model.

Repp BH (1992a). Diversity and commonality in
music performance: An analysis of timing
microstructure in Schumann's "Trédumerei"”, J
Acoust Soc Am 92/5: 2546-2568.

Repp BH (1992b). Probing the cognitive represen-
tation of musical time: Structural constraints on the
perception of timing perturbations Cognition 44:
241-281.

TMH-QPSR 2-3/1997

Sundberg J & Verrillo V (1980). On the anatomy of
the ritard: A study of timing in music. J Acoust Soc
Am 68: 772-779.

Todd NP, McA (1995). The kinematics of musical
expression, J Acoust Soc Am 97/3: 1940-49.

Todd NP, McA (1985). A model of expressive
timing in tonal music. Music Perception 3: 33-58.

Todd NP, McA (submitted). Time and space in music
performance: Comment on diversity and commo-
nality in music performance, Repp, Bruno, H.,
JASA 92(5) 1992, J Acoust Soc Am.

45



