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Stopping in running and in music performance 

Part II. A model of the final ritardando based on runners’ 
deceleration 
Anders Friberg and Johan Sundberg 

Abstract 
A model for describing the change of tempo in final ritardandi is presented. The 
model was based on the previous finding that runners’ average deceleration can be 
characterised by a constant brake power. This implies that velocity is as a square-
root function of time or alternatively, a cubic-root function of position. The 
translation of physical motion to musical tempo is realised by assuming that 
velocity and musical tempo are equivalent. To account for the variation observed 
in individual measured ritardandi and in individual decelerations, two parameters 
were introduced; (1) the parameter q controlling the curvature with q=3 corre-
sponding to the runners’ deceleration, and (2) the parameter vend corresponding to 
the final tempo. A listening experiment gave highest ratings for q=2 and q=3 and 
lower ratings for higher and lower q values. Out of three tempo functions, the 
model produced the best fit to individual measured ritardandi and individual 
decelerations. A commonly used function for modelling tempo variations in 
phrases (duration is a quadratic function of score position) produced the lowest 
ratings in the listening experiment and the least good fit to the measured individual 
ritardandi. The fact that the same model can be used for describing velocity curves 
in decelerations as well as tempo curves in music provides a striking example of 
analogies between motion and music. 

 
 

Introduction 
In a previous article we measured the velocity of 
runners as they stopped from running (Friberg & 
Sundberg, 1997). Discarding the samples that 
received the lowest mean rating for “aesthetical 
quality” by an expert panel, it was found that the 
average velocity curve was very similar to the 
average tempo curve of final ritardando 
(Sundberg & Verillo, 1980). It was also found 
that the runner kept the decelerating power 
approximately constant during the entire 
deceleration. This article presents a model of the 
final ritardando which is based on this average 
velocity curve, and complemented by two 
parameters. The parameters were needed to 
account for the variation occurring in individual 
ritardandi observed in music performances. The 
resulting set of curves is evaluated both in a 
listening experiment and by fitting the model 
parameters to measured ritardandi and to 
runners’ decelerations. 

Representation of tempo 
The choice of dependent and independent vari-
able is obviously crucial in an attempt to 

elaborate a model for tempo variation. Different 
strategies for representing tempo data have been 
used in the past.  

The choice of independent variable has also 
varied. Most researchers have used score 
position. Thus, each note value is expressed in 
terms of the number of shortest unit, for 
example 16’th notes, so that the duration of a 
quarter note is expressed as four units. Another 
possibility for the independent variable is time. 
This was recommended by Todd (1995) who 
suggested that ongoing time is more easily 
perceived than the more abstract score position. 
An advantage of using time is that tempo curves 
then tend to assume simpler forms. There is, 
however, a computational problem. To be 
applicable to a music example, an arbitrary 
tempo curve expressed as function of time must 
be transformed into a function of score position. 
Unfortunately, such transformations have an 
analytic solution only for some simple cases.  

As dependent variable tempo, defined as the 
inverse of tone duration, seems a natural choice. 
However, also beat or tone duration has been 
used.  
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Figure 1 shows some simple ritardando curves 
and how they appear in three different repre-
sentations. The left column of panels in Figure 1 
shows duration as a function of score position x, 
the middle columns of panels shows the same 
relations transformed into tempo as function of 
score position, and the right column of panels 
shows the same relations expressed as tempo as 
function of time. The choice of variables 

obviously affect the shape of the curve pro-
foundly. A change of the independent variable 
from score position to time (mid and right 
columns) results in an more concave or less 
convex curvature. For example, when the tempo 
is a square root function of score position, it 
becomes a linear function of time. A quadratic 
relation between duration and score position 
(top left panel) has been commonly used in the 

  (a) Quadratic duration of x

    (b) Linear tempo of x

     (c) Square root tempo of x

    (d) Cubic root tempo of x
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Figure 1. A comparison of different tempo representations for four simple final ritardando 
curves. Duration as a function of position (x) (left) compared with tempo as a function of 
position (middle) or tempo as a function of time (t) (right). 
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past. Note that this curve, when transformed into 
a curve showing tempo versus score position 
(top middle panel), starts with a convex and 
ends with a concave curvature.  

Previous models 
Sundberg & Verrillo (1980) measured the note 
durations of 24 final ritardandi in phonograph 
recordings of baroque music. Out of these data 
they derived a model consisting of two phases, 
each of which showed a linear decrease of 
tempo when expressed as function of score 
position. The length of the second phase 
corresponded to the last musical motif of the 
piece. 

Several attempts have been made to derive 
musical tempo variations from physical motion. 
An early example was provided by Kronman & 
Sundberg (1987) who used a model of a 
runner’s deceleration. Thereby, assuming that 
steps corresponded to beats, they hypothesised 
that step length and deceleration force remain 
constant throughout the entire deceleration. This 
implied that the tempo curve was a square root 
function of score position. This appealing 
analogy between steps and beats had later to be 
abandoned, however, when confronted with 
measurements on real runner’s decelerations 
(Friberg & Sundberg, 1997). (As we have 
explained elsewhere (op. cit.), the analogy 
between a runner’s deceleration and the final 
ritardando that was presented by Kronman and 
Sundberg was based on an erroneous sub-
stitution of the independent variable in the 
Sundberg and Verrillo’s investigation, score 
position instead of normalised time.)  

Feldman et al. (1992) investigated curves of 
performed accelerandi and ritardandi in five 
examples that were selected by David Epstein 
from commercially available recordings. The 
authors developed a simple force model of 
physical motion which assumed tempo to be 
equivalent with velocity. They regarded smooth 
beginnings and endings important characteristics 
of such tempo changes, and therefore proposed 
that tempo should be expressed as a quadratic or 
cubic function of time. These functions 
correspond to a linear and a quadratic change of 
force with time, respectively. However, in the 
subsequent analysis they used beat duration as a 
function of score position instead of tempo as a 
function of time. Yet, they fitted their data, 
expressed in this new form, to linear, quadratic, 
or cubic functions. They found the two latter 
alternatives reasonably appropriate to 
approximate these data and concluded that their 

force model neatly accounted for the observed 
tempo profiles.  

Repp (1992a) measured the timing of 28 
performances of Robert Schumann’s Träumerei. 
The accelerando-ritardando shape of a salient, 
six-note motif was successfully modelled by 
expressing tone duration as a quadratic function 
of score position. He also carried out a 
perceptual evaluation of this function applied to 
synthesised piano performances of the same 
music example (Repp, 1992b).  

Todd (1985) presented a model of phrase 
related tempo changes in music performances. 
In this model, tone durations were expressed as 
quadratic functions of score position. Later he 
proposed a modified version (Todd, 1995) based 
on an analogy between velocity in physical 
motion and tempo in music performance, thus 
implying equivalence between physical position 
and score position. He simply assumed the 
deceleration and acceleration forces to be 
constant which implied linear variations of 
tempo as a function of time. It can be noted that 
this case corresponds to a square root function 
of score position (Figure 1c, middle and right 
panels), thus similar to the model presented by 
Kronman & Sundberg (1987).  

Building on Todd’s idea of a quadratic 
relation between tempo and score position co-
author AF developed a model which related 
tempo changes to the hierarchical phrase 
structure (Friberg, 1995a). The model allowed 
for variations that typically can be observed 
between different experts’ performances of the 
same piece. Thus, when tested against Repp’s 
measurements of the 28 performances of 
Träumerei, the model successfully accounted for 
the phrasing variation observed among these 
performances. 

Summarising, the most fruitful analogy 
between music performance and physical 
motion is to assume that musical tempo is 
equivalent to velocity. Furthermore, the musical 
rubato has been described (1) as a quadratic 
change of duration versus score position, or (2) 
as a linear change of tempo versus time whilst 
the data from running suggest the alternative 
that (3) tempo is a square root function of time 
(Friberg & Sundberg, 1997); it is unclear which 
description is more accurate.  

Model 
Basic for the construction of our model for final 
ritardandi was the assumption that the brake 
power was constant in a runner’s deceleration. 
This implies that the kinetic energy is a linear 
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function of time and, since kinetic energy is 
proportional to velocity squared, velocity will be 
a square root function of time. Let v be velocity 
(tempo), x be position (score position), then  

v
dx

dt
t ~ .  (1) 

Primarily for practical purposes, x was chosen 
as the independent variable. Integrating v, 
solving for t, and substituting t in (1) we obtain 

dx t t x v x x~ ~ ( ) ~  
3

2

2

3

1

3  

Thus, velocity (tempo) is proportional to the 
cubic root of position (score position). Re-
inspection of the individual ritardandi analyzed 
by Sundberg & Verillo (1980) revealed variation 
with regard to the overall curvature. To account 
for this variation, a curvature parameter q was 
introduced: 

v x x q( ) ~
1

 

By changing the constant q a number of 
different curvatures can be obtained, including 

the runners’ mean deceleration (q=3) as well as 
the previously mentioned square-root function 
(q=2). 

Unlike velocity in locomotion, the tempo 
never reaches zero in music, if tempo is defined 
as the inverse of tone duration. This implies the 
need for a second parameter, the final tempo 
vend. The resulting model of the tempo (v) as a 
function of score position (x) was defined as 

 v x v xend
q q( ) ( )  1 1

1

 (2) 

Here, tempo and vend are normalized with 
respect to pre-ritardando tempo (vpre) and 
position is normalized with respect to total 
ritardando length measured in score units. Score 
position x=1 occurs at the onset of the last note. 
Figure 2 shows the resulting tempo curves for 
four different q values. The values of q=1, q=2, 
and q=3 correspond to (a) a linear function of x, 
(b) a square root function of x (i.e., a linear 
function of t), as proposed earlier by Kronman 
& Sundberg and Todd, and (c) the approxi-
mation of runners' deceleration, respectively.  
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Figure 2. The ritardando model with four different q values (q=1,2,3,4) and the quadratic duration 
function. The final tempo was fixed at vend . These were the five curves used in the listening 
experiment. 
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Table 1. Music examples, preritardando tempi (vpre) and the final tempo values (vend) used in the 
listening experiment. Note that vend is normalized with respect to vpre.  
 

Music example Abbr. vpre  
(shortest notes/s) 

vend  
 

J. S. Bach: Eng. Suite 2 Prel.,  
last 5 meas. 

E2P 6.48 0.3 

J. S. Bach: Wohltemp. clav. I 
Prel. 1, last 5 meas. 

WIP 4.47 0.4 

minor second sequence (Db4-C4-
Db4-C4-Db4-C4-...Db4), 21 notes 
totally  

m2 5 0.4 

 
 

The translation from the continuous curve to 
discrete tones is realized by integrating the 
inverse of the tempo function (Eq. 2) (see Todd, 
submitted).  

 1
1 1

1

v

dt

dx
v xend

q q     


( )  

Let k vend
q 1. Then, we obtain time as 

function of score position: 

t x
q kx q

q k

q

q

( )
( )

( )


 




1

1

1

, q > 1 (3) 

The integration constant was determined by 
setting t(0) = 0. The duration (DR) of a tone is 
given by the time difference for the x values 
corresponding to the onset xon and offset xoff  of 
the tone.  

DR t x t x

q kx q kx

q k

off on

off

q

q
on

q

q

  

  



 

( ) ( )

( ) ( )

( )

1 1

1

1 1

 (4) 

The advantage of using  t(x) to determine the 
tone durations is that it is independent of note 
values. For example, four sixteenth notes will 
add up exactly to the duration of one quarter 
note.  

The model (Eq. 2) has the advantage that it is 
easy to transform, if time instead of position is 
preferred as the independent variable. Tempo as 
a function of time can be obtained by solving (3) 
for x and substituting the result in (2): 

 v t v tend
q q( ) ( )   1 11

1

1  

Note that this equation is essentially the same as 
equation (2) with the value of q decreased by 
one. 

Perceptual evaluation 
A listening experiment was performed to assess 
the preferred curvature value q in different 
music examples. The previously mentioned 
phrasing curve with duration as a quadratic 
function of score position was included as an 
additional alternative. 

Method 

Stimuli and procedure 
Three different music examples were used, two 
excerpts from pieces by J.S. Bach and a 
sequence of two alternating notes, a minor 
second apart, see Table 1. The purpose of the 
Bach examples was to have two different 
musically realistic examples. The minor second 
example was chosen to attain a minimum of 
musical content without destroying the percep-
tion of the ritardando curve; in our informal 
pretests, we found that a simple tone repetition 
was not enough to differentiate the curvatures. 

Four different q values (q=1,2,3,4) were 
used for the ritardando model (Eq. 2). For the 
phrasing curve with duration as a quadratic 
function of score position the expression v(x) = 
1/(0.7x2/vend+1) was used. 

The preritardando tempo (vpre), ritardando 
length and ritardando depth (vend) were fixed for 
each music example throughout the test, see 
Table 1. These values were determined in 
collaboration with two professional musicians, 
Lars Frydén and Monika Thomasson. In all 
examples, the ritardando started at the first note 
onset occurring at least 1300 ms, as measured in 
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preritardando tempo, before the onset of the last 
note.  

In the pretests it was found that the duration 
of the penultimate note seemed important to the 
perceived depth of the ritardando. The method 
described above for translation of the continuous 
tempo function to discrete note durations did not 
permit the setting of an exact value for the 
lengthening of the penultimate note. Therefore, 
a second normalization was performed so that 
the duration of the penultimate note was set to 
1/(vend *vpre).  

Special attention had to be paid to the last 
note. Its note value is sometimes the same as 
that of the preceding note but sometimes 
considerably longer. In the latter case, no further 
prolongation of the last note is called for. On the 
contrary, such long final notes can even be 
shortened in a real performance. In the test, the 
duration of the final note was simply set to 1.25 
times the duration of the penultimate note. 
However, if the last note was already longer 
than this, it was left unchanged. 

To exclude the influence of dynamics, the 
music examples were played on a sampler 
synthesizer (SampleCell) using recorded tones 
from a harpsichord. The ritardando model was 
implemented in the Director Musices program 
(Friberg, 1995b) on a Macintosh computer. The 
examples were recorded on a DAT tape with 
some artificial reverberation (Yamaha REV7). 
All subjects listened to the tape over earphones 
adjusted to a comfortable listening level. 

The first six examples on the test tape were 
used as practice trials. They were followed by a 
total of 51 test trials (5 curves X 3 music 
examples X 3 repetitions) in random order. The 
test took 17 min.  

The subjects were asked to mark on a 10 cm 
long visual analogue scale on an answering 
sheet how musical they found the performance 
of the ritardando. The endpoints of the line were 
labelled “extremely good” and “extremely bad”. 
The listeners were also instructed to try to 
ignore the performance of the music preceding 
the ritardando as well as the length of the final 
note. The rating values used in the subsequent 
analysis was defined as the length in mm from 
the “extremely bad” endpoint, i.e. the better 
ritardando, the higher the rating value. 

Subjects 
The subjects were 19 students all taking the 
course in music acoustics at KTH. After the test, 
they answered a questionnaire about their 

musical background. The questionnaire asked if 
they had experience of performing music, if so, 
what instrument, how many years of perform-
ing, how many hours per week and in which 
music styles. In addition, they could make any 
general comment about the test.  

According to the answers from the 
questionnaire, most of the subjects could be 
considered as amateur musicians. The final 
ritardando is mostly heard in classical music and 
therefore mainly classical musicians would have 
practical experience of performing final ritar-
dandi. Nine subjects reported that they had some 
experience of classical music. One of these had 
professional experience as a classical musician. 
Most subjects found the test quite difficult with 
the exception of the professional player. Thus, 
the task was difficult for listeners lacking 
previous experience with performance of 
ritardandi on a professional level. 

Results 
Using the subjects' ratings as the dependent 
variable the results were submitted to a 
repeated-measures analysis of variance perform-
ed by the SuperANOVA 1.11 program for 
Macintosh. The within-factors were 5 curves X 
3 music examples X 3 repetitions. Despite the 
difficulty of the test, the main effect of curve 
was highly significant (p<0.0001), indicating 
that the listeners could clearly differentiate the 
curves. The main effects of music example and 
repetition were also significant (p<0.0001 and 
p<0.015). No interaction terms were significant. 
The main effect of music example and repetition 
disappeared, when the m2 example was 
excluded from the analysis. The fact that there 
was a strong effect of repetition only in the case 
of the m2 example may indicate that this 
example had a strange musical content that, 
however, the listeners gradually got used to.  

The mean ratings for the different curvatures 
are shown in Figure 3. They reveal that the two 
curvatures that received the highest ratings 
originated from the model with q=2 and q=3. 
The first value corresponds to the model 
supported by Kronman & Sundberg (1987) and 
by Todd (1995), while the second value corre-
sponds to the curvature derived from runners’ 
decelerations. Both for higher and lower q 
values and the quadratic duration, the mean 
ratings were lower as indicated by a highly 
significant contrast analysis resulting from a 
comparison of the cases q=2 and q=3 with the 
three remaining alternatives (p<0.0001). 
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Figure 4, showing the means for each music 
example and curve, offers a more detailed repre-
sentation of the results. First, it can be noted that 
for all curves the minor second example was 
rated much lower than the other examples. 
Obviously, despite the instruction to concentrate 
on the ritardando, the subjects were unable to 
disregard the musical context. Second, the 
maximum rating was obtained for the q=2 curve 
in the E2P example and for the q=3 shape in the 
W1P example. This suggests that the optimum 
curve is dependent on the music example. A 

contrast analysis comparing q=2 for E2P and 
q=3 for W1P with q=3 for E2P and q=2 for 
W1P showed a barely significant difference 
(p<0.04). Further testing with more skilled 
listeners is needed to further test this difference. 

Matching the model to 
measurements 
The model with q=3, i.e. the runners’ 
deceleration, was previously found to fit well 
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Figure 3. Overall mean ratings of the different curvatures. The error bars indicate 95% 
confidence intervals. 
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Figure 4. Mean ratings for the interaction of music example and ritardando curve. The bars 
indicate the positive parts of a 95% confidence interval. 
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with the average ritardando shape (Sundberg & 
Verillo, 1980; Friberg & Sundberg, 1997). In 
this section, the ability of the model to fit 
performed mean and individual ritardandi as 
well as runner’s mean and individual 
decelerations will be examined.  

The q and vend parameters in the model, 
defined in Eq 2, were varied by means of the 
solver function in Microsoft Excel 7.0, such that 
the sum of the squared distances between the 
model and the measured data was minimized. In 
addition, a third parameter, voffset, was varied in 
the optimizing process. This parameter simply 
added a constant to the model.  

Average curves 
As an initial check of previous results, the model 
was fitted to the curves for the mean ritardando 
and the mean deceleration (Friberg & Sundberg, 
1997), see Figure 5. The fit is good in both 
cases. In the case of the deceleration curve, 
however, this was expected, as the model was 
originally derived from this curve. Figure 5 also 
specifies the optimal values of the parameters q 
and vend. For both cases the q values were close 
to 3. The small difference between q=3.4 and 
q=2.8 is probably of minor relevance; while our 
previous results showed that a q difference of 
1.0 was clearly perceptible, an informal listening 
test suggested that a q difference of 0.6 was not 
noticeable. 

Individual ritardandi measured by 
Sundberg and Verillo 
The model was fitted also to individual 
ritardandi taken from the original raw data by 
Sundberg and Verillo. To improve the reliability 
of the fitted curvature data only ritardandi with a 
smooth shape, containing a minimum of 
individual note departures, were selected. Thus, 
only the performances with at least 6 
consecutive final notes with monotonically 
increasing durations were used. In this way, 12 
final ritardandi were selected out of totally 22, 
all by J.S. Bach (Table 2). Apart from the 
present model, two other alternatives were tried. 
As note duration is frequently assumed to be a 
quadratic function of score position, one 
alternative was a quadratic polynomial in which 
the three parameters were fitted to measured 
durations (henceforth quadratic duration). In the 
other alternative, a similar quadratic function 
was used to approximate the tempo rather than 
note duration (henceforth quadratic tempo). The 
fitted model parameter values and the resulting 
determination coefficients (r2) for the 12 
examples are listed in Table 2. 

Figure 6 shows the model and the two 
alternatives fitted to the first music example 
(WIP). Notice that the quadratic duration has the 
undesired property of an initial tempo increase. 
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Figure 5. Left panel: The model (line) fitted to the mean ritardando curve (diamonds) from Sundberg 
and Verillo. Right panel: The model (line) fitted to the mean velocity curve (diamonds) of the runners’ 
deceleration. Note that time rather than position is used as the independent variable. 
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Table 2. Music examples used in the test where the model was fitted to data for individual ritardandi 
measured by Sundberg & Verillo (1980), keeping their abbreviations (parentheses). The values of the 
parameters q, vend and voffset  that generated the best fit of the model are also listed. The three 
rightmost columns show the determination coefficients r2 for the model and for the two alternatives 
tried.  

 
Music examples Fitted model parameters Squared correlation coefficient 

(r2) 
  

Notes 
 

q 
 

vend 
 

voffset 
 

Model 
Quadratic 
duration 

Quadratic 
tempo 

W. clav I Prel. 1 (WIP) 10 2.5 0.32 0.005 0.982 0.927 0.975 
W. clav II Prel. 1 (WP1) 8 2.1 0.37 0.0001 0.980 0.989 0.983 
W. clav II Prel. 2 (WP2) 7 2.4 0.51 0.03 0.967 0.989 0.977 
W. clav II Fug. 3 (WF3) 6 1.2 0.48 -0.03 0.969 0.951 0.968 
W. clav II Fug. 5 a (WF5) 7 4.2 0.50 0.01 0.995 0.970 0.995 
W. clav II Fug. 5 b (WF5) 8 2.6 0.37 -0.02 0.975 0.919 0.966 
Eng. Suite 1 Allem. (E1A) 6 2.0 0.45 -0.03 0.982 0.943 0.978 
Eng. Suite 2 Allem. (E2A) 11 3.7 0.37 0.02 0.975 0.927 0.980 
Fr. Suite 4 Allem. (F4A) 6 4.2 0.50 0.02 0.991 0.959 0.986 
Fr. Suite 6 Allem. (F6A) 7 2.4 0.45 0.02 0.981 0.965 0.979 
Fr. Suite 6 Cour. (F6C) 7 5.0 0.46 -0.008 0.994 0.902 0.959 
Italian Conc. Mvt. 3 (IC3) 7 1.2 0.34 -0.01 0.970 0.961 0.970 

Mean  2.8 0.43 0.001 0.980 0.950 0.976 
SD  1.2 0.07 0.02 0.01 0.03 0.01 

Max  5.0 0.51 0.03 0.995 0.989 0.995 

Min  1.2 0.32 -0.03 0.967 0.902 0.959 
 

 
As shown in Table 2 the mean q value (q=2.8) is 
very close to the initial value of q=3 that was 
derived from the runners’ decelerations. Note 
that example WIP was also used in the listening 
experiment above. It received a q value of 2.5 
which is just in the middle of the listeners’ 
preference, as seen in Figure 3. However, q 
varied substantially between examples. Indeed, 
two examples yielded q=1.2, i.e., the tempo 
decreased almost linearly with score position 
and in three examples q exceeded the value of 
four. Such low and high values of q received 
low ratings in the listening test above, and were 
yet obviously acceptable in these performances. 
This supports the assumption above that the 
optimal ritardando curve depends on some 
characteristics of the music example, e.g., 
musical structure and tempo. Another factor of 
potential relevance is the performer’s intention 
or preference. The final tempo vend varied 
comparatively less, between 32% and 51% of 
the initial tempo.  

The model produced the highest mean 
correlation with the measurements (mean r2 = 
0.98). A t-test comparing the mean r2 for the 
model and the mean r2 for the quadratic duration 
alternative yielded a significant difference 
(p<0.003): this means that, on average, the 
model approximated the measured ritardandi 
better than the quadratic duration. 

Although, the correlation was slightly better 
for the model than for the quadratic tempo 
polynomial, this difference was not significant. 
With regard to the shortest ritardandi, consisting 
of no more than six notes, it could be argued 
that many slightly curved functions would offer 
a good fit. Longer ritardandi, on the other hand, 
often exhibited a more pronounced tempo 
decrease in the end than in the beginning. This 
case can be accounted for by the model by 
means of a relatively high value of q (Figure 7). 
The quadratic tempo function fails to produce 
the characteristic increased curvature in the end 
of the ritardando. 
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Figure 7. Model (left), quadratic tempo (middle) and quadratic duration (right) functions fitted to a 
measured performance of a comparatively long ritardando (music example WP19 in Sundberg and 
Verillo, 1980, not included in test referred to in Table 2). The increased curvature in the end of the 
ritardando can not be modelled with a quadratic tempo function as seen in the figure. 
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Figure 8. Model(left), quadratic tempo (middle) and quadratic duration (right) functions fitted to a 
ritardando measured by Feldman et al. (1992). 
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Figure 6. Model(left), quadratic tempo (middle) and quadratic duration (right) functions fitted to a 
measured performance of  the music example WIP. 
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Table 3. Results of attempts to fit the model and a quadratic velocity function to each of the 12 
decelerations used by the authors (1997) for calculating a mean deceleration curve. The two rightmost 
columns show the determination coefficients r2 for the model and for the quadratic velocity function.  

 
 q vend voffset Model

r2 
Quadratic velocity 

 r2 
Mean 2.8 0.27    0.004   0.990    0.9778 
SD 0.5 0.08  0.02 0.01 0.02 
Max 3.4 0.39  0.03    0.999    0.9995 
Min 1.8 0.13 -0.02    0.978     0.939 

 

Individual ritardandi measured by 
Feldman, Epstein and Richards 
Feldman et al. (1992) measured two ritardandi 
in performances of orchestral music. These 
ritardandi occurred within the pieces, i.e. not in 
a final position. Also, they were clearly longer 
than the final ritardandi considered above, and 
were measured on the beat level instead on the 
note level. The same three functions as above 
were fitted to the example (Sample 1: A Dvorak, 
Slavonic Dance, op 48:8, measures 243-272), 
which had a smoothest shape (Figure 8). Despite 
the difference in style, length and context, the 
result is similar to that observed in Figure 7. The 
model produced the best fit, slightly better than 
that of the quadratic tempo function, especially 
in the end of the ritardando. The fit obtained 
from the quadratic duration gave the least good 
fit. 

Individual decelerations of runners 
Friberg & Sundberg (1997) used 12 selected 
decelerations for computing the average velocity 
curve for runners’ deceleration. The model and a 
quadratic velocity function was fitted also to 
each of these 12 decelerations. Table 3 shows 
the results in terms of averages across examples.  

Table 3 shows that, again, the model 
produced a better fit than the quadratic velocity 
alternative. According to a two-tailed t-test, the 
means of the determination coefficients r2 
differed in this case significantly (p<0.02) 
between the model and the quadratic velocity 
function.  

Discussion 
In discussing the model proposed here for 
description of final ritardandi and runners’ 
decelerations, certain limitations should be born 
in mind. The start of the final ritardando is 
difficult to identify in measurements. Perceptu-
ally a smooth onset of the ritardando is 
important, as mentioned. For example, informal

 

listening tests revealed that the onset of the 
ritardando was far too abrupt when the 
alternative linear tempo function of score 
position was used. Obviously, a smooth onset 
complicates the identification of the starting 
point. On the other hand, a rigorous method was 
applied for identifying the ritardando onsets for 
the individual ritardandi referred to in Table 2: 
all tones following the ritardando onset show a 
progressively decreasing tempo. This definition 
favours late ritardando onsets. Such cases tend 
to reduce the value of q.  

There are also other limitations. The 
perception of a final ritardando would depend 
not only on tempo changes but also on dynamic 
changes. This parameter was not analyzed in the 
present investigation. Another important factor 
is its total length. What is considered an 
appropriate ritardando may also depend on the 
instrument played. In view of the analogies 
suggested by our finding between music and 
locomotion, it would be tempting to explore 
possible musical equivalents of e.g. inertia and 
its effect on the final ritardando. 

It appeared that it was more difficult for the 
listeners to differentiate the tempo curves in a 
musically unnatural example. In selecting the 
music examples for the listening test, the authors 
frequently noted that the perceived character of 
the different curves were well exposed by real 
music examples and almost impossible to 
distinguish in unrealistic, simple examples, such 
as a sequence of tone repetitions. On the other 
hand, the tempo curve seems to originate from 
the paramount experience of locomotion. Maybe 
the musical unnaturalness of such examples 
distracts the listener’s attention from the tempo 
curve. In any event, realistic musical examples 
seem crucial for a correct evaluation of any 
music performance model. 

The quadratic duration curve gave the 
poorest results, both in the listening experiment 
and in the curve fittings. This was surprising 
since it had been successfully applied to 
describe tempo curves associated with phrasing 
(Todd, 1985; Repp, 1992; Friberg, 1995a; Penel 
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& Drake, in press). Transformed to tempo as 
function of score position the quadratic duration 
curve assumes a shape characterized by a 
gradual decrease of the curve steepness, as was 
illustrated in Figure 1a. If translated to velocity 
in locomotion such a curve shape would imply 
that the runner refrains from spending energy on 
reduction of speed toward the end of the 
deceleration process, thus suggesting a continu-
ation of the movement. This message appears 
quite appropriate at phrase endings to a music 
listener; the music continues beyond the phrase 
boundary. Indeed, according to informal listen-
ing tests the impression of an approaching final 
stop disappeared when the quadratic duration 
curve was used for final ritardandi; it was no 
more obvious that the last tone really was the 
last.  

Surprisingly, we found two cases of q=1.2 in 
the fittings of the individual ritardandi, i.e., the 
tempo decreased almost linearly with score 
position. Such a curve (q=1) was rated low in 
the listening experiment. Also, when applied in 
informal tests to a variety of music examples, 
this curve sounded musically unacceptable. As 
with the quadratic duration, the problem was 
that the piece did not appear to approach a final 
stop during the last part of the ritardando.  

A factor of possible relevance to our results 
is musical style. The measurements and fittings 
in which the quadratic duration was used mainly 
concerned romantic classical music while the 
present final ritardando model was mostly tested 
on Baroque music (except for Sample 1 from 
Feldman et al. (1992) which was composed by 
Dvorak). It is possible that the poor success of 
the quadratic duration alternative reflected that 
these two music styles are associated with 
different types of motion. It is also possible that 
the final ritardando model would work as a 
description of the tempo modulation in phrases. 
We plan to check this possibility in future 
research.  

Why does our model work? The two cases 
q=2 and q=3, which received the highest ratings 
in the listening experiment, have a very simple 
form in terms of locomotion; the former implies 
that the breaking force is constant while the 
latter implies that the breaking power is con-
stant. Such simple relations would facilitate 
prediction of the final stop.  

Conclusion  
The present model of the final ritardando was 
based on the previous finding that the braking 
power is approximately constant during runners’ 
decelerations (Friberg & Sundberg, 1997). By 

introducing two parameters, q for curvature and 
vend for the end value, the model could well 
describe the average final ritardando tempo 
curve, the average runners’ decelerations velo-
city curve, individual final ritardandi, and 
individual decelerations. These findings sub-
stantiate the common assumption that 
locomotion and music are related.  

The listening experiment indicated a 
preference for q values between 2  q 3, where 
q=3 corresponds to the average velocity of the 
runners’ decelerations and q=2 to a previously 
proposed model for final ritardandi (Kronman & 
Sundberg, 1987) as well as to a model for phrase 
related tempo curves presented by Todd (1995). 
However, the curvature range was larger in the 
individual ritardandi than in the listening 
experiment, thus suggesting influence of music-
al factors. Describing duration as a quadratic 
function of score position, previously found 
applicable to tempo modulations occurring in 
phrases, was tried with poor results both in a 
listening test and in attempts to match individual 
measured ritardandi.   
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